

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

EVENT-DRIVEN SIMULATION AND ANALYSIS OF AN
UNDERWATER ACOUSTIC LOCAL AREA NETWORK

by

Goh, Meng Chong

June 2010

 Thesis Advisor: Joseph A. Rice

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
June 2010

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE
Event-Driven Simulation and Analysis of an Underwater Acoustic Local Area
Network
6. AUTHOR(S) Goh, Meng Chong

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government. IRB Protocol number ________________.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)
“Seastar” is an underwater Local Area Network (LAN) concept involving high-frequency acoustic modems sending
large volumes of data from a distributed set of peripheral sensor nodes to a centralized node for data fusion. The
notional operating range of the acoustic modems used is 500m. This research considers four candidate Seastar
network protocols: Time division multiple access (TDMA) polling with and without Selective automatic repeat
request (SRQ), and TDMA token ring with and without SRQ. The number of peripheral nodes, the layout of the
nodes, and the noise level of the environment are modeled and evaluated, according to performance metrics, including
data throughput, communications latency, and packet error rate. It was determined that in a low-noise environment,
the token ring with SRQ protocol delivers the most throughput of data with the minimum number of dropped packets,
while in high-noise conditions, polling with SRQ is preferred. In addition, if data throughput is not a priority, polling
with SRQ is advantageous. Therefore, it is recommended that a switch be implemented for adaptively selecting the
network protocol depending on the prevailing noise conditions and the critical performance metrics.

15. NUMBER OF
PAGES

109

14. SUBJECT TERMS Communications network, sensor network, acoustic communications,
undersea sensors, simulation, Seastar, Seaweb

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

EVENT-DRIVEN SIMULATION AND ANALYSIS OF AN UNDERWATER
ACOUSTIC LOCAL AREA NETWORK

Goh, Meng Chong
Senior Engineer, Republic of Singapore Navy

B.S. (Honors) in Technology with Electronics, University of London, 2003

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ENGINEERING ACOUSTICS

from the

NAVAL POSTGRADUATE SCHOOL
June 2010

Author: Goh, Meng Chong

Approved by: Joseph A. Rice
Thesis Advisor

Daphne Kapolka
Chair, Engineering Acoustics Academic Committee

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

“Seastar” is an underwater Local Area Network (LAN) concept involving high-frequency

acoustic modems sending large volumes of data from a distributed set of peripheral

sensor nodes to a centralized node for data fusion. The notional operating range of the

acoustic modems used is 500m. This research considers four candidate Seastar network

protocols: Time division multiple access (TDMA) polling with and without Selective

automatic repeat request (SRQ), and TDMA token ring with and without SRQ. The

number of peripheral nodes, the layout of the nodes, and the noise level of the

environment are modeled and evaluated, according to performance metrics, including

data throughput, communications latency, and packet error rate. It was determined that in

a low-noise environment, the token ring with SRQ protocol delivers the most throughput

of data with the minimum number of dropped packets, while in high-noise conditions,

polling with SRQ is preferred. In addition, if data throughput is not a priority, polling

with SRQ is advantageous. Therefore, it is recommended that a switch be implemented

for adaptively selecting the network protocol depending on the prevailing noise

conditions and the critical performance metrics.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. SEASTAR NETWORK...1
B. SCOPE OF RESEARCH ..2
C. THESIS ORGANIZATION..2

II. HIGH–FREQUENCY ACOUSTIC TELEMETRY MODEM3
A. SPECIFICATION..4

1. Frequency ...4
2. Transmission Mode..5
3. Data Reliability...5

a. Convolutional Coding...5
b. Multipath Guard Period..6
c. Data Redundancy..6

4. Data Rate ..6
B. SPECIAL FUNCTIONS..7

1. Acoustic Ranging ...7
2. Transmit Power..7

C. OPERATIONAL SETTINGS...8
1. Acoustic Response Time-Out ..8
2. Idle Time...8

III. THE COMMUNICATION CHANNEL ..9
A. PHYSICAL CHANNEL..9
B. TRANSMISSION LOSS ...9

1. Spreading Loss ...9
a. Spherical Spreading..10
b. Cylindrical Spreading ...10

2. Absorption Loss ...10
C. NOISE LEVEL...11

1. Wind and Sea State..12
2. Shipping – In Bays and Harbors ..13
3. Biology...14

D. LINK BUDGET ...16
E. ERROR RATE...17

IV. NETWORK PROTOCOLS ..21
A. SELECTIVE AUTOMATIC REPEAT REQUEST (SRQ)22
B. POLLING ...23

1. Without SRQ ..23
2. With SRQ..24

a. Propagation Delay...25
b. Dwell Time...25
c. Utility Packet Transmission Time ..26
d. Data Packet Transmission Time...26

 viii

e. Adaptive Time-Out Period ..26
C. TOKEN RING..26

1. Without SRQ ..27
2. With SRQ..28

V. NETWORK SIMULATION...31
A. SIMULATION PARAMETERS ..31

1. General Definitions ..31
2. Input Parameter...32

a. Node Position ..32
b. Error Rate..32

B. PERFORMANCE METRICS ..33
1. Latency..33
2. Throughput...34
3. Dropped Data Packet...34
4. Error-Free Cycle..35

C. CASE STUDIES AND PARAMETRIC ANALYSIS35
1. Number of Peripheral Nodes ..35
2. Layout of Nodes..35

a. Linear Layout..35
b. Circular Layout ...36

3. Error Rate...38

VI. RESULTS ...39
A. EFFECTS OF NUMBER OF NODES AND GEOMETRICAL

LAYOUT ..39
B. EFFECT OF ERROR RATE..43

1. Time Per Cycle Versus Error Rate ..43
2. Throughput and Dropped Data Rate...44
3. Channel Utilization and Error-Free Cycle45

VII. CONCLUSION AND RECOMMENDATIONS...47
A. SUMMARY OF FINDINGS ...47
B. CONCLUSION ..48
C. RECOMMENDATIONS FOR FUTURE WORK......................................49

1. Energy Conservation ...49
2. Environmental Noise Simulation..49
3. Performance Measurement of Seastar Modems49

APPENDIX SIMULATION ALGORITHM IN MATLAB..51

LIST OF REFERENCES..89

INITIAL DISTRIBUTION LIST ...91

 ix

LIST OF FIGURES

Figure 1. Seastar LAN within a Seaweb WAN. (After [1]) ..1
Figure 2. Family of acoustic telemetry modems. (From [2]) ..3
Figure 3. Noise Spectrum Level based on empirical formulae by Coates. (After [5])12
Figure 4. Ambient Noise Spectrum Level caused by sea state effect. (After [5])13
Figure 5. Noise Spectrum Levels of wind and rain. (From [10])..13
Figure 6. Noise spectrum data obtained from five different ports in the United States

and Panama. The dotted line represents data taken at night. Note also that
the vertical scale is dB re 1 µBar instead of re 1 µPa. (From [7])14

Figure 7. Left: Snapping shrimp NSL measured at various locations. (From [8]).
Right: NSL measured in waters off the coast of Singapore. (From [9]).........15

Figure 8. Packet Error Rate (PER) for utility and data packets. ...19
Figure 9. Network exchange consists of a utility packet sent from the central node to

the peripheral node polling for data. After a short delay, the peripheral
node replies with a utility packet concatenated with a data packet. The
data packet is broken into 16 sub-packets..21

Figure 10. A data packet is divided into 16 sub-packets, each with its own CRC. When
a corrupted data packet is received, the central node issues an SRQ utility
packet requesting the peripheral node retransmit only the corrupted sub-
packets. If necessary, the central node issues additional SRQs until either
all sub-packets are successfully received or a pre-determined number of
retries are reached. If a pre-determined number of retries is reached, the
data packet is dropped and the central node proceeds to the next peripheral
node. 22

Figure 11. Star topology with polling protocol. The left diagram is without SRQ and the
right is with SRQ. High-bit-rate data packets are depicted as wide arrows,
and low-bit-rate utility packets as narrow arrows. (From [6]).........................23

Figure 12. Polling without SRQ..24
Figure 13. Polling with SRQ. ..25
Figure 14. Token Ring Network without SRQ. ..27
Figure 15. Token Ring network with SRQ. ..29
Figure 16. Calculation of latency for the token ring with SRQ protocol.34
Figure 17. Different layouts of straight lines with two to eight peripheral nodes................36
Figure 18. Different circular layouts with two to eight peripheral nodes. Note that the

range between peripheral nodes begins to decrease when the total number
of peripheral nodes exceeds six. ..37

Figure 19. Number of peripheral nodes with an error rate of 0.0. ..40
Figure 20. Number of peripheral nodes with error rate of 0.2. ...42
Figure 21. Average and maximum time per cycle verse error rate.44
Figure 22. Throughput and dropped data rate versus error rate. ...44
Figure 23. Channel utilization and error-free cycle versus error rate.45
Figure 24. Performance metrics ..47

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. General specifications of ATM-890 acoustic telemetry modems.4
Table 2. Bit rate selection for MFSK...6
Table 3. Transmit power settings...8
Table 4. TL due to absorption at a range of 500 m..11
Table 5. Definition of terms used in the simulation...31
Table 6. Duration of various events. ..32

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ACRONYMS AND ABBREVIATIONS

BER Bit Error Rate

BPP Bits Per Packet

εb Energy Per Bit

LAN Local Area Network

MSKF M-ary Shift Key

N0 Noise Energy Level

NL Noise Level

NSL Noise Spectrum Level

PER Packet Error Rate

PSK Phase Shift Key

SL Source Level

SNR Signal-to-Noise Ratio

SNRb Signal-to-Noise Ratio Per Bit

SRQ Selective Automatic Repeat Request

TL Transmission Loss

WAN Wide Area Network

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

I would like to thank the following people for making my learning experience at

the Naval Postgraduate School (NPS) a joy, and this period of my life a truly memorable

one:

First and foremost, to my dearest wife, Sarah, for her love, patience, support and

encouragement. Thank you for bearing our first child, Zoey, and taking care of her. To

my child, Zoey, you are a joy to behold and hold onto.

To my parents, for inculcating in me the discipline to persevere in life and for

coming to Monterey to provide care and support when Zoey was born.

To my thesis advisor, Joe Rice, for giving me this opportunity to be involved in

the developmental work of Seastar. Thank you for providing invaluable guidance,

patience and freedom for the successful completion of this thesis.

To Chris Fletcher from SPAWAR, thank you for sharing your knowledge of the

deployment and configurations of the Seastar/Seaweb network.

To the staff from Teledyne Benthos, Ken Scussel and Kevin Amundsen, for

answering my questions about the Seastar modem testing and specification.

To the faculty and staff of the Physics Department at NPS, who helped me to

garner a suitable basis of knowledge for completing this thesis. In particular, I would like

to acknowledge Professors Daphne Kapolka, Kevin Smith, Steve Baker, and Bruce

Denardo for their help in my more advanced acoustics courses.

To LT Devlin Messmer and family, thank you for volunteering as my sponsor,

helping my family transition to living in the USA, and extending friendship toward my

family and myself.

Last, but not least, I would like to thank my colleagues and fellow students, LT

Jeremy Biediger, LT Pongsakorn Sommai (Royal Thai Navy) and ENS William Jenkins,

who provided peer advice and moral support, without which I could not have finished my

thesis.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

Exploiting the underwater domain has been a challenge since the onset of the First

World War, when the modern submarine was introduced to the world. Since then,

technological innovation has enabled surveillance of the undersea environment. From the

mid 20th century, wired acoustic sensors have been deployed on the seabed for

monitoring the radiated signatures of submarines. These sensors, however, are expensive

to deploy and maintain. With the transition into the network-centric warfare of the 21st

century and increasing interest in littoral anti-submarine warfare (ASW), there is a

demand for a cheaper, more rapidly deployable system to provide underwater domain

awareness.

Figure 1. Seastar LAN within a Seaweb WAN. (After [1])

A. SEASTAR NETWORK

The Naval Postgraduate School (NPS), with sponsorship from the Office of Naval

Research, is developing the Seaweb Wide Area Network (WAN), which incorporates

underwater acoustic modem technology. Seaweb allows a network of autonomous

battery-powered sensors to be rapidly deployed over wide areas (10–100km2). To

increase the density of sensors for a smaller area, a study was done by [1] in 2007 to

consider feasibility of a local area network (LAN) consisting of short-range acoustic

 2

modems capable of communicating at distances up to 500m. With its higher operating

frequency and greater spectral bandwidth, the acoustic LAN would carry large quantities

of data from the peripheral nodes for fusion at a central node. As shown in Figure 1, the

fused information may then be transmitted from the Seastar central node via the Seaweb

WAN for further uses. The acoustic LAN is named “Seastar” in reference to its

centralized hub and spoke architecture.

B. SCOPE OF RESEARCH

The scope of this thesis research is to simulate candidate Seastar networking

protocols and evaluate their operations against a set of performance metrics. This

simulation involves representing the high-frequency acoustic modem, the spectral

bandwidth, the operational range, and the associated data rate in an event-driven

numerical program.

The performance metrics include information throughput (bytes), latency

(seconds), and dropped data rate (data packets per day) of the network compared to the

number of nodes the network can support, layout of the network, and the ambient

environmental noise level.

C. THESIS ORGANIZATION

The thesis contains seven chapters including this introduction.

Chapter II gives an overview of the Seastar prototype short-range modem and its

programmable functions.

Chapter III describes the physical ocean operating environment, including the

sonar equation and a link budget model for underwater acoustic communication.

Chapter IV discusses the network protocols implemented in the simulation.

Chapter V presents the simulation setup, establishes a set of performance metrics,

and identifies various test cases to be simulated.

Chapter VI reports the results of the simulation test cases.

Chapter VII draws conclusions and discusses recommendations for future work.

 3

II. HIGH–FREQUENCY ACOUSTIC TELEMETRY MODEM

The concept for the Seastar network and the specification of the short-range

acoustic modem were introduced by Kerstens [1]. As a result of that study, a high-

frequency modem was developed at the request of NPS to provide an operational

frequency band of 35 to 55 kHz for the implementation of the Seastar network.

The high–frequency acoustic telemetry modem is an evolution of the ATM-88X

family of acoustic telemetry modems that have been used in the implementation of

Seaweb. These modems provide wireless bidirectional underwater communications

between two or more nodes, as illustrated in Figure 2.

Figure 2. Family of acoustic telemetry modems. (From [2])

 4

A. SPECIFICATION

The general specification of the high–frequency acoustic telemetry modems are

presented in Table 1.

Type Seaweb Modem Seastar Modem

Frequency Band 9–14 kHz (LF omnidirectional) 35–55 kHz (HF omnidirectional)

Data Modulation PSK and Multi-Channel MFSK

Bit Rate for

Multi-Channel

MFSK

140 – 2400 bits/s

560 – 9600 bits/s

Processing

Feature

Data Redundancy

½-rate Convolutional Coding

Multipath Guard Period

Average

Transmit Power

20 watts at power level 08 (max) @ 21 VDC

Source Level: 183 dB re: 1 µPa @ 1 m

Battery Capacity 400 watt-hours at max power level 08 @ 21°C

Range 500 – 5000 m 50 – 500 m

Table 1. General specifications of ATM-890 acoustic telemetry modems.

1. Frequency

The Seastar omnidirectional transducer operates in a 20 kHz bandwidth of

relatively flat frequency response from between 35 kHz and 55 kHz. This is a four-fold

increase over Seaweb’s spectral bandwidth, which operates in the 9–14 kHz range. This

should result in a higher throughput of data for the Seastar network at the expense of a

shorter range of transmission.

 5

2. Transmission Mode

There are two modulation schemes available aboard the modem: phase shift

keying (PSK) and multi-channel M-ary frequency shift keying (MFSK).

PSK modulation permits the modem to transmit at a higher bit rate than multi-

channel MFSK. However, as sound propagates, the ocean environment produces a multi-

path effect, which greatly reduces the coherent nature of the PSK signal. Thus, PSK

modulation is reserved only for transmission in the vertical column of the ocean.

For the purpose of the Seastar network, we would only operate the modem using

the multi-channel MFSK modulation scheme, which ensures a more robust physical layer

for the network. With multi-channel MFSK, 32 individual pulse trains of 4-ary FSK are

transmitted simultaneously. Thus, at any instant during data transmission, 32 out of a

possible 128 tones are active. Jenkins [3] examines various candidate implementations of

multi-channel MSFK modulation for Seastar.

3. Data Reliability

There are constraints in underwater communications, such as a slow sound speed,

signal fading, frequency-dependent attenuation, limited spectral bandwidth, and

multipath interference due to sea surface and sea floor reflections. These channel

impairments are treated in greater detail in the next chapter. The modem uses three

different methods to overcome channel effects and increase the reliability of the

transmission. These methods involve the use of convolutional coding, multipath guard

periods, and data redundancy. However, these methods reduce the effective bit rate or

throughput of the transmission.

a. Convolutional Coding

Convolutional coding is a form of forward error correction. The modem

uses a constraint-length-9, ½-rate convolutional coding. This allows the modem to

recover binary information even when a few symbols are lost at the receiver. The

effective bit rate or throughput is reduced by half.

 6

b. Multipath Guard Period

In the high multipath situations where there is significant time spread at

the receiver, a guard period may be inserted between data symbols. If the duration of the

guard period is the same length as the data symbols, the effective bit rate is reduced by

half.

c. Data Redundancy

Data redundancy involves repeating the same data bits two or more times.

This reduces the bit rate by half or more, depending on the number of times the data bits

are repeated.

4. Data Rate

The data rate of the modem is selectable from a range of 140 bits/sec to 2400

bits/sec for multi-channel MFSK modulation as described in Table 2. Note that these data

rates may be increased by a factor of 2 or 4, depending on how the additional spectral

bandwidth at high frequencies is exploited [3].

Setting Remarks
02 140 bits/s MFSK repeated four times with ½-rate convolutional coding and 25

ms multipath guard period
03 300 bits/s MFSK repeated twice with ½-rate convolutional coding and 25 ms

multipath guard period
04 600 bits/s MFSK with ½-rate convolutional coding and 25 ms multipath guard

period
05 800 bits/s MFSK with ½-rate convolutional coding and 12.5 ms multipath

guard period
06 1066 bits/s MFSK with ½-rate convolutional coding and 3.124 ms multipath

guard period
07 1200 bits/s MFSK with ½-rate convolutional coding
08 2400 bits/s MFSK

Table 2. Bit rate selection for MFSK.

The data rate is affected by the choice of data reliability methods employed. The

greater the protection, the higher the data reliability will be, but the lower the data rate.

For the purpose of this thesis, we will assume 140 bits/s as the rate for utility packet

transmission and 2400 bit/s for data packet transmission.

 7

B. SPECIAL FUNCTIONS

There are two special modem functions of particular interest to this thesis:

acoustic ranging and transmit power.

1. Acoustic Ranging

A modem and its sensor packet are generally deployed by dropping the modem

overboard from a boat or aircraft and marking the position of the point of release.

However, depending on the currents and depth of the area, the position drifts from where

it is dropped to where it ultimately anchors on the seabed. Therefore, there is a location

uncertainty.

To correct such errors, the modem can be remotely activated to measure the range

between itself and neighboring modems in the network, by issuing an acoustic ranging

signal as discussed by [14].

2. Transmit Power

While high transmit power will ensure a high signal-to-noise power ratio (SNR)

that supports maximum transmission ranges, excessive transmit power is not desirable, as

it will also contribute to a high reverberation level that reduces the reliability of short-

range communication. High transmit power also reduces the life of the node, as it

consumes more battery power.

Modem settings allow for a remote power command to set the transmit power.

The available settings are as shown in Table 3, with the values indicating the reduction in

power from the maximum level.

 8

Setting Power Level (dB)
01 - 21 dB (Minimum power level)
02 - 18 dB
03 - 15 dB
04 - 12 dB
05 - 09 dB
06 - 06 dB
07 - 03 dB
08 0 dB (Maximum power level)

Table 3. Transmit power settings.

C. OPERATIONAL SETTINGS

This section introduces some of the modem settings used in the network

simulations.

1. Acoustic Response Time-Out

The acoustic response timeout is the time during which the local modem waits for

an acknowledgment of an acoustic command sent to a remote modem. It is computed

from the expected round-trip time of the command, acknowledgment dialog, and duration

of the transmitted packets. If the wait for an acknowledgment exceeds this timeout, a

dropped packet is declared.

2. Idle Time

When the modem does not receive input from a source after the idle time period,

it goes into a low-power state to conserve energy. Therefore, if the modem is accessed

only once a day, the idle time should be set as low as possible to conserve energy.

However, if the modem is constantly being polled, the idle time should be set longer to

avoid the need to frequently reawaken the modem from its low-power state. The

calculation of the latency time as a performance metric will allow us to determine

appropriate settings for the idle time.

 9

III. THE COMMUNICATION CHANNEL

A. PHYSICAL CHANNEL

Radio transmission in terrestrial networks is a well-studied topic resulting from

advances in commercial telecommunication. Acoustic communication in the ocean is far

less understood. There are many factors that impair signal reception in the ocean. The air-

sea interface and the sea bottom boundary support multipath propagation; the slow rate of

acoustic propagation causes signal delays; the spatially and temporally varying sound-

speed profile causes convergence and divergence zones in the water column; and various

noise sources, together with the frequency and bandwidth of the signal, cause the signal

to become delayed, distorted and weakened.

In the following sections, we categorize these factors that influence acoustic

communication into a few parameters, i.e., transmission loss, ambient noise level, and

source transmission level. By focusing on the frequency bandwidth and the operational

range of the Seastar modem, we will apply these parameters in a link budget analysis to

deduce the SNR at the receiver. From this SNR, we hope to estimate the probability of

error for utility and data packets to be used in our simulation.

B. TRANSMISSION LOSS

Transmission Loss (TL) reflects the fraction of sound intensity lost between the

source and the receiver. These losses can be broadly categorized as geometric spreading

loss and the absorption losses. Because the range of these high frequency modems is

short, we only consider simple spreading and absorption estimates.

1. Spreading Loss

Let I0 be the reference intensity of the sound pressure at a range of 1 m from the

source and I1 be the sound intensity at a distant point. The transmission loss is

 TL = 10 log
I0

I1

 (dB) (3.1)

 10

a. Spherical Spreading

For a small source in a homogeneous, unbounded and lossless medium,

power P generated at the source will radiate spherically outward.

P = 4πr0
2I0 = 4πr1

2I1 (3.2)

If is a reference distance of 1 m, the transmission loss at a distance r1

will be

TLspherical = 10 log
I0

I1

= 10 log r1
2 = 20 log r1 dB (3.3)

where r1 is in meters.

b. Cylindrical Spreading

The ocean medium is bounded by the ocean surface and the seabed. In an

ideal waveguide, sound does not cross these two boundaries. Therefore, the power

generated at the source will radiate cylindrically outward, bounded between two parallel

planes separated by a depth of D meters.

 P = 2πr0DI0 = 2πr1DI1 (3.4)

TLcylindrical = 10 log
I0

I1

= 10 logr1 (dB) (3.5)

2. Absorption Loss

In general, absorption terms in TL calculations arise from scattering, as well as

from thermal and chemical relaxations and are frequency dependent. In this discussion

scattering is assumed to be negligible. In this case absorption loss is dominated by

thermal and chemical relaxations in seawater. An estimate of the absorption coefficient

α is defined as follows by Thorp [4] as

α =
0.11 f 2

1+ f 2 +
44 f 2

4100 + f 2 + 3×10−4 f 2 + 3.3×10−3 (dB/km) (3.6)

 11

 TLabsorption = αr ×10−3 (dB) (3.7)

where r is in meters and f is in kHz.

 is shown in Table 4 for a frequency range from 35 to 55 kHz at a

range of 500 meters.

Frequency TLabsorption (dB)
35 kHz 5.30
40 kHz 6.47
45 kHz 7.63
50 kHz 8.76
55 kHz 9.85

Table 4. TL due to absorption at a range of 500 m.

From Table 4, we notice that the maximum TL will occur at a frequency of 55

kHz. Since the modem makes use of the full frequency spectrum, we will use the

 factor at 55 kHz to compute the total transmission loss. To compute the

maximum TL, spherical spreading is used. Therefore, by using Equations (3.3) and (3.7),

TL = 20 log(500) +α500 ×10−3 = 53.98 + 9.85 = 63.83 (dB) (3.8)

C. NOISE LEVEL

Noise Level (NL) in the ocean can be categorized into man-made noise and

ambient noise. Man-made noise is mainly caused by machinery noise along the coast and

shipping activity, while ambient noise is mainly caused by biologic and seismic activity,

and by hydrodynamic noise caused by wave action, currents, tides, wind, and rain.

Coates [5] provides empirical formulae to estimate Noise Spectrum Levels (NSL)

as a function of frequency for open water. It can be observed from Figure 3 that in the

band of our frequency of interest, between 35 and 55 kHz, wind-related noise contributes

the most to the NSL.

 12

Figure 3. Noise Spectrum Level based on empirical formulae by Coates. (After [5])

Our interest here is in the littoral waters where sensors are likely to be deployed.

The noise level in littoral water arises from three main components, as stated by Urick

[6]. They are: (1) wind noise, (2) shipping and industrial noise, and (3) biological noise.

A power sum of the noise spectrum level from these sources is used to determine the

noise level of the area. However, as such noise varies over time, only a rough estimate

may be made.

1. Wind and Sea State

According to the empirical formula from [5], illustrated in Figure 4, at a

frequency of 45 kHz and for wind speeds between 0 and 15 m/s, the NSL ranges from 20

to 45 dB re: 1 µPa2/Hz. This is comparable to a wind contribution ranging from 38 to 40

dB with wind speeds ranging from between 6 m/s and 10 m/s, as shown in Figure 5.

 13

Figure 4. Ambient Noise Spectrum Level caused by sea state effect. (After [5])

Figure 5. Noise Spectrum Levels of wind and rain. (From [10])

2. Shipping – In Bays and Harbors

Most of the shipping noise in the deep ocean is below 1 kHz. Even in coastal

areas, shipping noise contributes little to our frequency band of interest. Anderson and

Gruber [7] measured the ambient noise at 30, 90, and 150 kHz in five ports in the United

 14

States and Panama. The highest NSL value measured was from the port of Cristobal,

where 70 dB at 30 kHz and 65 dB at 90 kHz were recorded. The lowest noise level was

from Norfolk, where 45 dB at 30 kHz and 44 dB at 90 kHz were recorded. Extrapolations

were made from these two measurements to obtain the NSL for 45 kHz, which has a

maximum NSL of 77 dB re: 1 µPa2/Hz and a minimum NSL of 44 dB re: 1 µPa2/Hz.

Figure 6. Noise spectrum data obtained from five different ports in the United States
and Panama. The dotted line represents data taken at night. Note also that the

vertical scale is dB re 1 µBar instead of re 1 µPa. (From [7])

3. Biology

Snapping shrimp, which exist in waters below latitudes of 27 degrees, generate a

high level of noise in the frequency band of our interest. From Figure 7, we see that at a

frequency of 45 kHz, snapping shrimp can generate NSL between 48 and 74 dB re 1

µP2/Hz.

 15

Figure 7. Left: Snapping shrimp NSL measured at various locations. (From [8]).
Right: NSL measured in waters off the coast of Singapore. (From [9])

Therefore, the total noise spectrum level (NSL) of the ambient noise is the

summation of the three major sources of noise: shipping, wind and biologic noise. Since

the range of a noise source is variable, such as the presence or absence of snapping

shrimp, noise spectrum level is also variable. We therefore determine some minimum and

maximum values for the total NSL:

NSLmin = Shippingmin ⊕ Biomin ⊕Windmin

NSLmin = 44 dB ⊕ 0 dB ⊕ 0 db = 44 (dB) (3.9)

NSLmax = Shippingmax ⊕ Biomax ⊕Windmax

 NSLmax = 70 dB ⊕ 74 dB ⊕ 45 db = 75.5 (dB) (3.10)

To translate from NSL to NL, we must account for the transmission bandwidth,

which we assume to be 80 Hz for each multi-channel MFSK tone.

Therefore,

 NLmin = NSLmin +10 log(80) = 44 +19 = 63 (dB) (3.11)

 NLmax = NSLmax +10 log(80) = 75.5 +19 = 94.5 (dB) (3.12)

 16

D. LINK BUDGET

For an omnidirectional transmitter, the source level (SL) is defined as

SL =
Isouce@1m

Iref

 (3.13)

The intensity of the source is referenced to a standard range of 1 m. At a radius of

1 m, the acoustic source is surrounded by a sphere of surface area

 Areasphere = 4πr2 = 12.6 m2 (3.14)

The power of the Seastar modem is 20 watts. Therefore, the intensity of the

source is

 Iscource@1m =
20

12.6
= 1.59 W/m2 (3.15)

The data rate for the utility packet and data packet is 160 bps and 2400 bps,

respectively. Therefore, the intensity of the source or the energy-per-bit is as follows:

 Iutil /bit =
Isource@1m

DataRateutil

=
1.59

160
= 9.92 ×10−3 W/m2 (3.16)

 IData /bit =
Isource@1m

DataRateData

=
1.59

2400
= 6.61×10−4 W/m2 (3.17)

The intensity of the water reference at 1 μPa is 6.76 ×10−19 W/m2 [9]. Therefore,

by applying Equations (3.16) and (3.17) respectively, together with the reference

intensity of water to (3.13), the SL or energy-per-bit for utility packets and data packets

(εb _Util and εb _ Data) is:

 εb _Util = 10 log(
Iutil /bit

Iref

) = 161.7 dB (3.18)

εb _ Data = 10 log(
IData /bit

Iref

) = 149.9 dB (3.19)

 17

The SNR-per-bit (SNRb) can be found by using the Link Budget Model developed

by Hanson [12] in the following formula:

Energy Per Bit - Transmission Loss - Noise Level = SNRb (3.20)

By substituting Equations (3.18) and (3.19) for Source Level, Equation (3.8) for

Transmission Loss, and Equation (3.11) for Noise Level to find the maximum SNRb, and

Equation (3.12) for Noise Level maximum to find the minimum SNRb, we get the

following result:

 SNRUtil _ Max = εb _Util − TL − NLmin = 34.9 dB (3.21)

SNRUtil _ Min = εb _Util − TL − NLmax = 3.4 dB (3.22)

SNRData _ Max = εb _ Data − TL − NLmin = 23.1 dB (3.23)

SNRData _ Min = εb _ Data − TL − NLmax = −8.4 dB (3.24)

We must be aware that the above SNRb may not be the minimum SNRb as the NL

is given as an average over time. At the other extreme, a noisy source (such as a speed

boat) passing above the receiver will generate a greater NL at that instant which will

affect the SNRb. Therefore, high variability and large dynamic range can be expected at

the receiver input.

Another observation is that the SNRb for a utility packet is about 12 dB stronger

than the SNRb for the data packet, because the utility packet has a slower rate of

transmission.

E. ERROR RATE

There are two selectable bandwidths for the Seastar modem, 10 kHz and 20 kHz.

The band is divided into 32 sets of 4-frequency bands. This is known as a multi-channel

4-ary FSK modulation. [3] describes alternative implementations of multi-channel MFSK

for Seastar, but these are not considered in this thesis.

The formula in [11] is used to compute a binary Bit Error Rate (BERb) for a

Gaussian noise random variable as

 18

BERb = 0.5 * erfc(
εb

N0

) , (3.25)

where erfc(•) is the complementary error function, εb is the signal energy level per bit,

and N0 is the noise energy level per bit.
εb

N0

 is equivalent to the SNR of the transmitted

signal. Therefore Equation (2.9) is rewritten as

BERb = 0.5 * erfc(SNRb) . (3.26)

For a M-ary FSK modulation, the probability of signal error, from [10], is

PM = (−1)n+1(M −1
n

)(
1

n +1
)exp −

nkεb

(n +1)N0

⎡

⎣
⎢

⎤

⎦
⎥

n=1

M −1

∑ , (3.27)

where k is the number of encoded bits in M (or k = log2 (M)).

The BER for M-ary FSK can be related to the probability of signal error using the

following relationship:

BER =
2k−1

2k −1
PM . (3.28)

There are 9 bytes in a utility packet and up to 4096 bytes per data packet.

Therefore, the number of bits per packet for a utility packet (BPPUtil) and a data packet

(BPPData) are as follows:

 BPPUtil = 9 × 8 = 72 bits (3.29)

 BPPData = 4096 × 8 = 32768 bits (3.30)

The packet error rate (PER) for both utility and data packets can be found by

using Equations (3.28), (3.29) and (3.30) as shown below:

PERUtil = 1− (1− BER)∧ (BPPUtil) (3.31)

PERData = 1− (1− BER)∧ (BPPData) (3.32)

PER for both utility and data packets are shown in Figure 8.

 19

Figure 8. Packet Error Rate (PER) for utility and data packets.

From Figure 8, we observe that the PER for data packets is about 400 times

greater than for utility packets. This factor is attributable to the larger number of bytes

(4096 verse 72) in a data packet compared to a utility packet and ignores the receiver

processing gain benefitting the utility packet by virtue of its lower bit rate. If the SNRb

difference due to the different bit rate for data and utility packets is taken into account,

the PER for the utility packet curve in Figure 8 would be an additional 12 dB less than

that of the data packet PER, rendering the PER for the utility packets negligible when

compared to the PER for data packets. We neglect the SNRb difference in our simulation.

Our assumed dependence of the communication channel link on the noise level is

summarized as follows. For a given transmit power and communication distance, we

have a constant value in εb and TL, and SNRb varies solely from fluctuation in the noise

level. This range of variation in SNRb determines the range of probabilities of packet

error rate according to Figure 8. Therefore, if we can obtain an accurate measurement of

the noise level in the communication channel, we can calculate SNR and estimate the

 20

error rate of the channel. For our simulation, we vary the data PER from 0 to 0.8 to

observe the effect of noise on the network protocol. In these simulations, we hold the

value of the utility PER to be 400 times lower than the data PER.

 21

IV. NETWORK PROTOCOLS

Seaweb uses a tree topology, which supports routing of information from the

branch nodes to a gateway node. In Seastar, where the central node acts as a direct-path

data collection point from a number of peripheral nodes, the tree topology is limited to a

single link per branch, often described as a “star” topology. Previously, Kerstens [1] has

identified the polling and token ring protocols to be suitable for implementation of

Seastar.

This chapter describes the polling and token ring protocols as well as

improvements of these two by implementing a selective automatic repeat request (SRQ).

A basic network exchange is described in Figure 9.

Figure 9. Network exchange consists of a utility packet sent from the central node to
the peripheral node polling for data. After a short delay, the peripheral node

replies with a utility packet concatenated with a data packet. The data packet is
broken into 16 sub-packets.

Seastar communications involve two classes of packets. The first class provides

various utility functions for the network and is referred to as a “utility packet.” The utility

packet is transmitted at a low bit rate (due to convolutional coding and data redundancy)

to ensure data reliability.

 22

The second class of packet is the “data packet.” The data packet is transmitted at a

higher bit rate.

A. SELECTIVE AUTOMATIC REPEAT REQUEST (SRQ)

The SRQ, as described in [13], is a mechanism implemented at the link layer to

mitigate the unreliability inherent in the acoustic modem physical layer. Without SRQ,

when the central node receives a data packet that contains bit errors, it will either drop

that data packet or request that the whole data packet be retransmitted again. The channel

capacity is thus reduced.

SRQ improves the link reliability and channel capacity by splitting each data

packet into 16 sub-packets, each with a 2-byte cyclic redundancy check. When errors

occur in one or more of the sub-packets, the central node requests that only the corrupted

sub-packets be retransmitted, as shown in Figure 10. This reduces the number of data

bytes to be transmitted by as much as a factor of 16. The maximum number of retries for

the SRQ can be limited, so that the data packet will only be dropped after this criteria is

reached.

Figure 10. A data packet is divided into 16 sub-packets, each with its own CRC. When

a corrupted data packet is received, the central node issues an SRQ utility
packet requesting the peripheral node retransmit only the corrupted sub-packets.
If necessary, the central node issues additional SRQs until either all sub-packets
are successfully received or a pre-determined number of retries are reached. If a
pre-determined number of retries is reached, the data packet is dropped and the

central node proceeds to the next peripheral node.

 23

B. POLLING

The star topology includes a central node and a number of peripheral nodes. The

central node polls each peripheral node sequentially, as shown in Figure 11, to control the

flow of data traffic.

Figure 11. Star topology with polling protocol. The left diagram is without SRQ and
the right is with SRQ. High-bit-rate data packets are depicted as wide arrows,

and low-bit-rate utility packets as narrow arrows. (From [6])

1. Without SRQ

For the purpose of our simulation, when a corrupted utility or data sub-packet is

received, the entire data packet is dropped. This policy ensures that the latency of the

network remains low. The utility packet transmitted from the central node, due to its

small size and low probability of error, is permitted for retransmission for a number of

times. If the maximum allowed retries is reached, the data packet is dropped and the next

node is polled.

 24

Figure 12. Polling without SRQ.

2. With SRQ

For polling with SRQ, as shown in Figure 13, the central node issues an SRQ

when a corrupted utility packet or data sub-packet is received from the peripheral node.

SRQ will continue to be sent to the same node until the maximum number of SRQ retries

is reached or a complete data packet is received from that node. A new utility packet is

then sent to the next peripheral node in line.

A silence from the peripheral node after issuing a utility packet by the central

node can be due to either failure in the utility packet reaching the peripheral node or a

failure in transmission from the peripheral node. The period of time from the

transmission of the utility packet by the central node to issuing an SRQ can be adaptively

calculated by computing the round-trip propagation delay (2tPD), dwell time (tDwell) and

the utility (tUtil) and data packet transmission (tData) times. They are defined as follows:

 25

Figure 13. Polling with SRQ.

a. Propagation Delay

Propagation delay is the time taken for the signal to travel from one node

to the other. It is computed as Range * Speed of Sound. The range between the nodes is

found during the network initialization phase by making use of a ranging function in the

modem. The description of that function can be found in [14]. For our simulation, we

assume the speed of sound over depth in seawater to be c = 1500m/s [15].

b. Dwell Time

The dwell time is the time from the arrival of the utility packet (poll)

from the central node to the transmission of the utility packet (header) to the central

 26

node. It consists of the modem wake-up time and computational time. It is set to a

constant of 1.2 seconds in the simulation.

c. Utility Packet Transmission Time

The time taken to transmit a utility packet is the Number of Bytes in the

Utility packet * Data Rate of the Utility Packet. For the simulation, they are 9 bytes and

140 bits/second, respectively, for the simulation.

9 * 8 /140 = 0.51 s (4.1)

d. Data Packet Transmission Time

The time taken to transmit a data packet is the Total Number of Data

Bytes * Data Rate of Data Packet. For our simulation, each data packet consists of 4000

data bytes and 96 overhead bytes, and they were transmitted at a data rate of 2400

bits/second.

e. Adaptive Time-Out Period

The adaptive time-out period, as shown in Figures 12b and 12c, is

calculated as:

Ttime−out = 2 * tPD + tDwell + tUtil + tData (4.2a)

Ttime−out = 2 * Range * c + tDwell + tUtil + tData (4.2b)

where c is the speed of sound in water.

C. TOKEN RING

Unlike the polling protocol, the central node in the token ring network

relinquishes control of the network flow by releasing a token to a peripheral node. The

node that has the token performs its task (i.e., transmitting the data) before passing the

token to the next node. This protocol should have a lower overhead compared with

polling.

 27

1. Without SRQ

In a token ring network that does not use SRQ, the central node releases the token

to the peripheral nodes upon initialization and does not regain control of the token, as

shown in Figure 14a. The central node continues to keep track of the position of the

token. In the event that a token transmission between two nodes is lost, the central node

intervenes by sending a new token to the next peripheral node in the line, as shown in

Figure 14b.

Any corrupted data packet is dropped. This allows the network to perform with

lower latency and shorter cycle time. The disadvantage of this protocol is that in a high

noise environment, there is the potential of losing a high amount of data.

Figure 14. Token Ring Network without SRQ.

 28

2. With SRQ

The final protocol is a combination of the token ring and polling with SRQ. In this

case, as shown in Figure 15a, the central node takes note of failed data packets in addition

to keeping track of the position of the token as before. When the token reaches the last of

the peripheral nodes, it passes back to the central node which issues SRQs to attempt to

reconstitute the corrupted data packet, node by node. A data packet is dropped after the

maximum number of retries. After the central node completes the SRQ process, the token

is again released to the peripheral nodes for a new cycle of data transfer.

This protocol helps in lowering the dropped data packet rate while keeping the

latency level lower than with the polling with SRQ protocol.

 29

Figure 15. Token Ring network with SRQ.

 30

THIS PAGE INTENTIONALLY LEFT BLANK

 31

V. NETWORK SIMULATION

Computer simulation of an event-driven Seastar network allows for controlled

study of the four candidate network protocols. The different network protocols are

exercised in the simulation through various parametric test cases. The simulations

generate four measurements, namely the network latency, data throughput, dropped

packets, and error-free cycle. For each test case, the candidate protocols are evaluated to

determine which protocol is best suited for meeting particular operational requirements.

A. SIMULATION PARAMETERS

1. General Definitions

Table 5 provides definitions of the terms used in this chapter and values assumed

for the simulation.

Type Definition
Data Packet Includes 16 sub-packets, containing a total of 4096 bytes,

of which 4000 are data bytes and 96 overhead bytes.
Sub-Packet Includes 250 data bytes and 6 overhead bytes.
Utility Packet Contains 9 bytes. Used for regulating the flow of data

traffic. Note that Utility packets will always precede the
Data packet from the peripheral node to the central node.

Table 5. Definition of terms used in the simulation.

The simulation is event-driven with a time increment between each event

equivalent to the duration of the process occurring at that time. Table 6 provides the

various events that are used for the simulation.

 32

Type Duration Description
tpropdelay Varies Propagation delay between each pair of nodes is

proportional to the range by the relation tpropdelay= r * c = r *
1500 m/s.

tCPU 1.200 sec Dwell time between receptions of utility packet to
response.

tTO 1 sec Time out period.
tData 13.653 sec Transmission time for one data packet containing 4096

bytes.
tSubData 0.853 sec Transmission time for one data sub-packet containing 256

bytes.
tUtil 0.450 sec Transmission time for one utility packet.

Table 6. Duration of various events.

2. Input Parameter

The simulation has two input parameters: position of the nodes in Cartesian

coordinates, and the error rate of the data packet.

a. Node Position

The node positions are specified within a 1001 by 1001 square grid with

the origin [0,0] at the center of the grid. The central node is placed at the origin. The

simulation calculates the range of the peripheral nodes to the central node and arranges

them in order of their distance from the central node, from the nearest to the farthest.

This is the sequence used by the polling protocol to access the peripheral nodes.

For the token ring protocol, the sequence of the nodes is further optimized

by an algorithm that computes the shortest path to cycle through all the nodes, beginning

and ending at the central node. The optimization algorithm limits the number of

peripheral nodes to less than nine peripheral nodes for this simulation program.

Propagation times between nodes, tpropdelay, are calculated using the

distances provided in Table 6.

b. Error Rate

The input for data packet error rate ranges from 0.0 to 0.8; i.e., 0.4 at

about SNRb = 10.4 dB, as shown in Figure 9. The simulation takes the data packet error

 33

rate and computes the utility packet error rate at 400 times lower, as explained in the

previous chapter; i.e., 0.001 at about SNRb =10.4 dB.

A random number between 0 and 1 of uniform distribution is generated at

each event when a packet is transmitted. A corrupted utility or data packet is declared if

the random number falls below the utility or data error rate, respectively. The simulation

takes the appropriate measures when an error event occurs according to the policy

prescribed by each network protocol.

B. PERFORMANCE METRICS

Simulated operation of the Seastar network is assessed according to certain

performance metrics related to important functional characteristics. Four such metrics are

identified in the following sections.

1. Latency

Latency is a measurement of the time required to complete a cycle. Each cycle

includes the transmission time, propagation delay, and dwell time. The latency

measurement starts with a node issuing a utility packet (poll or token) to the next node

and ends when the same node next issues the utility packet to the next node after

completing all the nodes in the network. The latency measurement starts at the central

node for the token ring with SRQ, as shown in Figure 16. The measurement starts at the

first peripheral node for the token ring without SRQ.

 34

Figure 16. Calculation of latency for the token ring with SRQ protocol.

Two different measurements of latency are recorded, the average time per cycle,

and the maximum time per cycle. The average time per cycle is computed by dividing the

total simulation time by the total number of cycles completed. The maximum time per

cycle is the longest time it takes to complete one cycle during a single simulation run. If

there is more than one simulation run, an average of the maximum time is recorded.

2. Throughput

Throughput is a measure of the number of successfully transmitted data packets

and data bytes the network can support within the simulation time. If SRQ is

implemented, only the successful transmission of all sub-packets is counted as a

successful transmission. If a dropped packet or timeout occurs, that packet is not

considered a successful transmission.

3. Dropped Data Packet

A dropped data packet occurs in three different ways. In the two protocols without

SRQ, in the event that an error bit occurs in the data packet, the data are considered

corrupted and the packet is dropped. In the two protocols with SRQ, in the event that the

maximum number of SRQ retries is reached, time-out is declared and the data packet is

SRQ

Dwell time

Cycle time
or latency

Token

Central Node Peripheral
Node 1

Data

Peripheral
Node 2

Token

Token

 35

dropped. For both polling protocols, in the event that the maximum number of retries of

the poll utility packet is reached, the data packet for that peripheral node is dropped.

4. Error-Free Cycle

Seastar is intended to gather data from each peripheral sensor node for

assimilation at the central node upon completion of a cycle. Therefore, any occurrence of

a dropped packet or timeout in a cycle may limit the successful fusion of data in that

cycle. The error-free cycle throughput measures each complete error-free collection of

data packets from all peripheral nodes in a cycle.

C. CASE STUDIES AND PARAMETRIC ANALYSIS

There are three variables in the simulation. They are (1) number of nodes, (2)

geometrical layout, and (3) the error rate. The variable error rate is used to simulate a

low-, middle-, and high-noise environment. Simulation can show the sensitivity of the

candidate protocol to these variable parameters.

1. Number of Peripheral Nodes

The simulation runs test the number of peripheral nodes = [2,3,4,5,6,7,8]. This

parameter is useful in examining the impact of increasing the number of nodes on the

different candidate protocols. The nodes are located on both a linear layout and a circular

layout as described in the following section.

2. Layout of Nodes

a. Linear Layout

A single line layout is useful in various applications, such as a surveillance

tripwire at a harbor entrance or a magnetic sensor network. Because the Seastar modem is

designed to operate within a range of 500 m, the maximum aperture of a linear layout is 1

km if the central node is placed at the middle.

 36

Figure 17. Different layouts of straight lines with two to eight peripheral nodes.

b. Circular Layout

Circular layouts, as shown in Figure 18, serve as bounding cases for

layouts involving a two-dimensional distribution of nodes. As described in [6], if there

are fewer than six peripheral nodes in the network, the area coverage of a circular layout

is limited by the assumed maximum communications range rmax = 500 m . If there are six

or more peripheral nodes, the coverage is limited by the central node when it is at the

center of the circle. Therefore, the maximum communication coverage of the network

when six or more peripheral nodes are deployed is πr2 = π (0.5)2 = 0.785 km2 .

250 250
(a)

167 166167
(b)

125 125 125 125
(c)

100
(d)

100 100 100 100

167 166167166 167 167
(e)

167166 167
(f)

125 125 125 125

125 125 125 125 125 125 125 125
(g)

 37

Figure 18. Different circular layouts with two to eight peripheral nodes. Note that the
range between peripheral nodes begins to decrease when the total number of

peripheral nodes exceeds six.

500 500

(b)
500

500

500

(c) 500

500

500

500

500

500

(d)
500

500

500

500

500

(e)
500

500

500

500
434

500

500

(f)
434

500

434

500

(a)

500

500

500

383

500

500

(g)
383

500

500 500

 38

3. Error Rate

The error rate is used to investigate the effect of noisy environments on the

network. This test parameter yields information on the relative performance of the

protocols in good and bad communication environments.

Deployed networks experience a wide range of ambient noise conditions. In

chapter III, it was estimated that the SNRData_Min, SNRData_Max SNRUtil_Min and SNRUtil_Max

for the data and utility packet to be -8.4 dB, 23.1 dB, 3.4 dB and 34.9 dB, respectively.

This gives an SNR range of 31.5 dB.

In order to achieve a data packet error rate of less than 10-5, SNRb > 13 dB is

required, as shown in Figure 9. When SNRb < 10.3 dB, a data packet error rate of more

than 0.5 is generated. For the purpose of this simulation, these two values will be

considered the low- and high-noise environments; that is, a Noise Level of less than 73

dB is considered to be a low-noise environment, and a Noise Level of greater than 75.8

dB is considered a high-noise environment. A data packet error rate of 0.2 is used to

simulate a mid-noise environment.

 39

VI. RESULTS

A. EFFECTS OF NUMBER OF NODES AND GEOMETRICAL LAYOUT

Figure 19 displays the result of a 0.0 error rate with the number of peripheral

nodes, N = [2,3,4,5,6,7,8] in both linear and circular layouts. The average time per cycle

plot shows that both polling methods have the same performance, since there are no bit

errors occurring in the simulation. They exhibit the longest average cycle time due to the

overhead of polling. The token ring with SRQ is the next longest, as the token

unnecessary passes through the central node. The token ring without SRQ provides the

shortest cycle time. The cycle times increase linearly as the number of nodes increase,

which is to be expected.

For the maximum cycle time plot, it might be expected to see the same plot as the

average time plot, as there are no errors to prolong the cycle time. However, the two

token ring protocols lay on the same line. This is because for the token ring without SRQ,

the token begins from the central node, and this first cycle time is the longest, and is thus

registered.

In the throughput plot, we observe the geometrical layout of the nodes coming

into play. In general, the linear layout enables the network to carry more data packets, as

the distances between the central and peripheral nodes, as well as between the peripheral

nodes themselves, are shorter when compared to the circular layout. The only exception

to this is the 3-peripheral circular layout when polling with SRQ protocol is applied. This

is because the central node is in the center of the triangle, as shown in Figure 18b, and

therefore, has a shorter traveling distance to the peripheral nodes. This enables it to have

a higher packet rate.

 40

Figure 19. Number of peripheral nodes with an error rate of 0.0.

It can be observed that the token without SRQ protocol provides the most

throughput in an error-free environment, as it has the least overhead. It is followed

closely by token with SRQ. Additionally, both of the polling protocols are the least

efficient. The same trend is seen in the channel utilization rate.

 41

Finally, in the error-free cycle plots, as the number of peripheral nodes exceeds

six, the coverage of the layout does not change, due to the star topology. Only the density

of the nodes in a given area increases with more than six peripheral nodes. Therefore, the

number of error-free cycles decays exponentially, as seen in the plot.

Figure 20 displays the performance with a change in the error rate parameter from

0.0 to 0.2 applied over the same number of nodes, as in Figure 19.

 42

Figure 20. Number of peripheral nodes with error rate of 0.2.

When errors are introduced into the network, some important changes occur. The

latency of the protocols with SRQ increases due to the additional error correction

mechanisms at work. For those protocols that do not implement SRQ, dropped packet

 43

rate increases significantly, as no error correction efforts are made with no change in

latency. All the protocols experience a reduction in the error-free cycle. Those protocols

that do not implement SRQ are the most adversely affected.

In concluding this section, we observe that as the latency of the network is both a

function of the number of nodes as well as the density of the nodes in a given area. Thus

the closer the peripheral nodes are to the central node, the lower the latency. Circular

layouts, being the bounding geometry, show the poorer performance overall as the

distance between the nodes are greater. In an error-free network, protocols without SRQ

allow the network to operate at maximum efficiency, but when errors are introduced into

the network, protocols with SRQ enable the network to continue to function with less

degradation.

B. EFFECT OF ERROR RATE

This section shows the effect of varying the error rate from 0.0 to 0.8 in a six-

peripheral network. This variation of error rate is to simulate changing environmental

noise and its impact on the network. As noted in the previous section, the circular layout

is the bounding case, and this section will only address the circular layout.

1. Time Per Cycle Versus Error Rate

In Figure 21, it is observed that for the protocols without SRQ, both the average

time per cycle and the maximum time per cycle remain constant with increasing error

rate. This is because whenever there is a corrupted data packet, it is dropped with no

delay to the network. For the protocol with SRQ, latency increases as the error rate

increases because of the time consumed by the SRQ mechanisms.

 44

Figure 21. Average and maximum time per cycle verse error rate.

2. Throughput and Dropped Data Rate

Figure 22. Throughput and dropped data rate versus error rate.

In the throughput plot in Figure 22, it is evident that the plot representing token

ring without SRQ crosses the token ring with SRQ and polling with SRQ at error rates of

about 0.12 and 0.45, respectively. Therefore, if maintaining a high level of throughput is

a priority and dropped data is of less concern, network protocols should be switched

when an increase in ambient noise level is observed.

 45

In the dropped data plot, the beginning of an exponential increase in dropped data

at error levels above 0.2 becomes evident. This rate can be suppressed by increasing the

maximum number of SRQs. However, this adversely impacts the latency of the network,

and is therefore a trade-off.

3. Channel Utilization and Error-Free Cycle

Figure 23. Channel utilization and error-free cycle versus error rate.

The channel utilization plot in Figure 23 illustrates how the utilization rate

decreases with increasing error rate as more and more of the channel availability is used

by error correction. In many applications of Seastar, an error-free cycle is important if the

central node requires uncorrupted data from all peripheral nodes to perform data fusion

for the cycle. From the error-free cycle plot in Figure 23, a crossover point between token

with SRQ and polling with SRQ at an error rate of 0.4 occurs. This indicates that the

polling with SRQ protocol is more robust at maintaining error-free cycles in noisy

environments.

 46

THIS PAGE INTENTIONALLY LEFT BLANK

 47

VII. CONCLUSION AND RECOMMENDATIONS

A. SUMMARY OF FINDINGS

Seastar is a LAN design for accumulating underwater distributed sensor data at a

central node for data fusion. This thesis evaluated four candidate network protocols using

an event-driven simulation. Figure 24 ranks the candidate protocol according to their

relative performance against particular metrics.

Figure 24. Performance metrics

For high throughput performance in low noise conditions, the token ring without

SRQ performs the best while in mid to high noise conditions, the token ring with SRQ is

superior. For low latency performance where dropped data packets can be tolerated,

token ring without SRQ provides the lowest cycle time. However, if there is a need to

minimize the number of dropped data packets, token ring with SRQ is superior.

In a data-sensitive network, where error-free cycles are necessary for successful

data fusion, the token ring with SRQ performs well from low to mid of noise. However,

in high noise environments, polling with SRQ performs better than token ring with SRQ.

 48

Polling without SRQ does not have any advantage over the other three protocols

in any scenario considered here. Therefore, it is recommended that this protocol not be

considered for future implementation.

For the simulation, all the modems were considered to be in either listening or

transmitting mode without entering a low-power mode. This means that battery energy is

constantly being consumed. In a scenario where the sensor data refresh rate is much

longer than the cycle time, having the modem switch to low-power mode could conserve

energy. Under this condition, the traditional protocol used by Seaweb, polling with SRQ,

would provide both a centrally controlled data transfer in conjunction with fast and

reliable throughput.

B. CONCLUSION

Seastar is a viable networking concept. The network protocols considered here are

well suited for the high throughput and reliability required by applications such as

maritime surveillance. The centralized topology is advantageous in that only the central

node need be sophisticated enough to perform data fusion, receive and process high bit-

rate data packets, orchestrate the LAN operations, and communicate through the Seaweb

WAN or gateway node. From a communication standpoint, the peripheral nodes can be

relatively simple, capable only of receiving utility packets. Such limited capability at the

peripheral nodes permits them to receive commands from the central nodes (e.g., poll and

SRQ) and peer-to-peer communications from neighboring peripheral nodes (e.g., token

and ping/echo).

It is concluded from this thesis research that the networking protocol should

include multiple operating nodes to be invoked under the control of the central node. The

selected protocol should be matched to the operational requirement (e.g., throughput,

latency, reliability) and the environmental conditions (e.g., noise conditions and error

rates).

 49

C. RECOMMENDATIONS FOR FUTURE WORK

1. Energy Conservation

The acoustic modem obtains its power from battery cells and this usually limits

the operational time. This thesis estimates the maximum throughput and minimum

latency by keeping the modem constantly in an “awake” mode. Therefore, this study does

not allow energy conservation to play a part in protocol selection.

In the event when the peripheral node refresh rate is low, the modem could be

placed in a low-power state between each cycle, thereby conserving its energy. There is a

need to evaluate the potential energy savings against the requirement for latency,

throughput and reliability.

2. Environmental Noise Simulation

The simulation conducted in conjunction with this thesis assumes static levels of

error rate. To develop this simulation program a mission planning tool, a module that

simulates or accepts a playback of pre-recorded noise level fluctuation characteristic of

the intended operational area, should be added. This would provide the mission planner

and operator with a better understanding of how the network will perform.

3. Performance Measurement of Seastar Modems

The transmitted power and source level for this simulation is obtained from the

vendor specification sheet. As of June 2010, the Seastar modems are undergoing testing

and measurement by another student at the Naval Postgraduate School (NPS). Once the

testing is complete, the actual modem data could be used to refine the simulation and its

test products.

 50

THIS PAGE INTENTIONALLY LEFT BLANK

 51

APPENDIX SIMULATION ALGORITHM IN MATLAB

This function iniSeaStar.m is called in the seastarsim.m function and is to

initialize the Seaweb simulation with the required data parameter.

function [SSPack] = iniSeaStar()

N = 7; %Number of Modems including the central node
Data_Mod = 2400; %Data modulation in bits per sec
Util_Mod = 160; %Utility modulation in bits per sec
Sound_Speed = 1500; %In meters per sec
Poll_CTS = 9; %Number of bytes used for Polling
Data = 4000; %Number of bytes
Processor_Delay = 1200; %Time for each modem to process the data in msec

%Parameter settings
Token_Byte = 9; % 2 bytes for addressing, 2byte for CRC, 1 byte for
%each node and 3 byte for SRQ addressing for each node.
Data_Mod = Data_Mod/8; % Data modulation in bytes per sec
Util_Mod = Util_Mod/8; % Utilities modulation in bytes per sec
SubPack = ceil(Data/16)+6 ; % 6 information bytes per subpacket
DataPack = SubPack*16; %16 Subpackets make up 1 data packet
Time_DByte = 1/Data_Mod; %Time to send a byte of data
Time_UByte = 1/Util_Mod;
Time_UtsPack = Time_UByte*Poll_CTS; %Time for Tx CTS in sec
Time_TokenPack = Time_UByte*Token_Byte;
Time_DataPack = Time_DByte*DataPack; %Time for Tx data in sec
Time_DataSubPack = Time_DByte*SubPack;
Time_Pro = Processor_Delay/1000; %Time Delay of Processor in sec

SSPack = [Time_DataPack,Time_DataSubPack,Time_UtsPack,Time_Pro,...
 Sound_Speed,N,DataPack,Poll_CTS,Time_TokenPack,Token_Byte,SubPack,...
 Data,Data_Mod,Util_Mod];

///

This function GridNode.m is called in the seastarsim.m function and takes in two

variable:

Number_of_Nodes = total deployed nodes (N)

 52

Matrix_of_Grid = A two by Number of nodes matrix with row 1 as the x-axis and

row 2 as the y-axis of the grid. The first column is the central node position.

The function will generate a grid of 1001 by 1001 and position the node into the

grid. The central node will be place at position (0,0), while the rest will take on a position

from -500 to 500 according.

The function will return an N+2 by N matrix with Rows 1 and 2 containing the x

and y coordinates of the position grid of the nodes, respectively. Columns 1 to N are the

node rankings by distance away from the central node with Column 1 being the central

node position. Rows 3 to Row N+2 versus Column 1 to N is the distance between those

nodes.

function [Block] = GridNode(Number_of_Nodes,Matrix_of_Grid)

N = Number_of_Nodes;
M = Matrix_of_Grid;
B = zeros(N+2,N);

for i = 1:2
 for j = 1:N
 if i == 1
 B(i,j) = M(i,1)-M(i,j);
 else
 B(i,j) = M(i,1)-M(i,j);
 end
 end
end

%Distance calculation.

for i = 3:(N+2)
 for j = 1:N
 B(i,j)=sqrt((B(1,i-2)-B(1,j))^2+(B(2,i-2)-B(2,j))^2);
 end
end

% Sort row 3 and column 1 of matrix according to distance from central node.
B = sortrows(B,1);
Block = rot90(sortrows(rot90(B,-1),N));

 53

//

This function PropTime.m calculates the propagation delay between the nodes.

Input includes the number of nodes, sound speed and the grid layout of the network.

Output of the function <Proptime> will consist of the grid position of the node and the

propagation time delay between the nodes.

function [TPropT] = PropTime(N,SS,Grid)

SpeedMatrix = cat(1,ones(2,N),repmat(SS,N,N));

TPropT = Grid./SpeedMatrix;

maxSpeed = 502/SS;

for i= 3:(N+2)
 for j = 1:N
 if TPropT(i,j) > maxSpeed
 TPropT(i,j) = 999;
 end
 end
end

///

This function TkRing.m is called in the seastarsim.m function. It is used to order

the nodes in for the Token Ring network that will provide the lowest amount of delay. It

take in the input of the Matrix of TPropDelay and Number of Nodes and outputs the

Token Order <Torder> and Token Ring Propagation Delay <TRdelay>

function [Torder,TDorder] = TkRing(TPD,Node)

a = sortrows(perms(2:Node),1:Node-1);
[x,y] = size(a);
b = ones(x,y+2);
b(:,2:y+1)=a;

TD = TPD(3:Node+2,:);

TDwithOrder = zeros(x,Node);

for i = 1:x

 54

 for j = 1:Node
 loc = b(i,j:j+1);

TDwithOrder(i,j) = TD(loc(1),loc(2));
 end
end

TotDelay = sum(TDwithOrder,2);
[TRdelay,Indexline] = min(TotDelay);

Torder = b(Indexline,:);
TDorder = zeros(2,Node);
TDorder(1,:) = TDwithOrder(Indexline,:);
for i = 2:Node
 b = Torder(i);
 TDorder(2,i) = TD(1,b);
end
///

The function Polling2.m is called in the seastarsim.m function and is used to

simulate the polling network with SRQ.

% Input of <Polling2> consists of the following
% a. ST = Simulation Time
% b. SSpack(1) = TDP = Tx Time for a Data Packet
% c. SSpack(2) = TDSP = Tx Time for a Data Subpacket
% d. SSpack(3) = TUP = Tx Time for a Utilities packet
% e. SSpack(4) = TCPUD = Delay time for modem CPU
% f. SSpack(6) = N = Number of nodes
% g. SSpack(7) = DB = Number of Data bytes
% h. PPD = A array of Propagation delay between nodes in sequence 1 to N
% i. SSpack(8) = Number of polling utilities bytes
% j. SSpack (9) = TTP = Tx time for a token ring
% k. SSpack(10) = TRB = Number of Token Ring bytes
% l. SSpack(11) = SPB = Number of subpacket bytes
%
% Output of <Polling> will consist of the following:
% a. PSDP = Successful number of data packets
% b. PSUP = Successful number of Utility packets
% c. PSB = Successful number of byte Tx.
% d. PSPRT = Number of sub-packets re-transmitted.
% e. PFSP = Number of sub-packet failures with time of failure
% f. PFP = Number of packet failure with time of failure
% g. PFU = Number of failed utilities Tx failures with time log of failure
% h. PTO = Number of Time-outs

 55

function [PSDP,PSUP,PSB,PSPRT,PFP,PFSP,PFU,PTO,CT] =
Polling2(ST,SSpack,PPD,EL)

%Ini Setup for function
time = 0; % Run time
sctime = 0; % Start Cycle time
nCycle = 0; % Number of cycles
sCycle = 0; % Number of Successful Cycles
maxCycletime = 0; % max time per cycle
avgCycletime = 0; % Average time per cycle
NEvent = 0; % Running number of Events
PSDP = 0; % Number of successful Data packets transmitted
PSUP = 0; % Number of successful Utilities packets transmitted
PSB = 0 ; % Number of Bytes transmitted
PSPRT = 0; % Number of sub-packets retransmitted
PFP = 0; % Number of failed packets event
PFSP =0; % Number of failed sub packet
PFU = 0; % Number of failed Utility packet
PTO = 0; % Number of Time-Outs
maxRetry = 3; % Number of retries before Time-out.
maxSRQ = 16; % Number of sub-packets
N = SSpack(6); %Number of Nodes
PDCount = 2; % Propagation Delay Counter
ELU = EL(1); % Error Level of Utilities
ELP = EL(2); % Error Level of Data Packet
TUP = SSpack(3);
TCPU = SSpack(4);
TO = 1; % TO wait
SPB = SSpack(11);
state = 1;
URC = 0; % Number of Utilities Retries
SRQRC = 0; % Number of SRQ Retries
MaxSRQR = maxRetry;
MaxUR = maxRetry;
SRQFlag = 0;
SRQerror = 0;
DropPackFlag = 0; % flagged if there's a dropped packet

%Main Program

while time <= ST
 switch state

 case 1

 56

 [time,B,NEvent] = PCnode2(time,ST,SSpack,PPD(PDCount),NEvent);
 state = 2;

 case 2
 PSUP = PSUP + 1;
 PSB = PSB + B;
 if AnyError(ELU) == true

state = 4;
 PSB = PSB - B;
 PFU = PFU + 1;
 PSUP = PSUP - 1;
 time = time + TCPU+PPD(PDCount)+TUP+TO;
 else
 state = 3;
 [time,B,P,SP,U,NEvent] =
PPnode2(time,ST,SSpack,PPD(PDCount),SRQerror,SRQFlag,NEvent);
 end

 case 3
 PSB = PSB + B;
 PSDP = PSDP + P;
 PSUP = PSUP + U;
 if SRQFlag == 1
 PSPRT = PSPRT + SP;
 end
 if AnyError(ELU) == true
 SRQerror = maxSRQ;
 if SRQFlag == 1

PFSP = PFSP + SRQerror;
end

 PFU = PFU+1;
 PSB = PSB - B;
 PSUP = PSUP - U;
 state = 5;
 elseif AnyError(ELP) == true
 if SRQFlag == 1
 SRQerror = ceil(random('unif',1,SRQerror));

 state = 6;
 PFSP = PFSP + SRQerror;

PSB = PSB - (SRQerror*SPB);
 else
 SRQerror = ceil(random('unif',1,maxSRQ));

state = 6;
 PFSP = PFSP - maxSRQ + SRQerror;
 PSB = PSB - (SRQerror*SPB);

 57

 end
 PFP = PFP +1;
 PFSP = PFSP + maxSRQ;
 SRQFlag = 1;
 PSDP = PSDP - P;
 else
 state = 7;
 end

 case 4
 if URC == MaxUR
 state = 7;

PTO = PTO + 1;
 DropPackFlag = 1;
 else
 URC = URC + 1;
 state = 1;
 end

 case 5
 if SRQRC == MaxSRQR

PTO = PTO + 1;
 DropPackFlag = 1;
 state = 7;
 else
 SRQRC = SRQRC+1;
 state = 4;
 time =time+TO; %util fail to reach back Central node, TO is the waiting gap
 end

 case 6
 if SRQRC == MaxSRQR

PTO = PTO + 1;
 DropPackFlag = 1;
 state = 7;
 else
 state = 1;
 SRQRC = SRQRC+1;
 end

 case 7
 if PDCount == N
 PDCount = 2;
 nCycle = nCycle + 1;
 ctime = time - sctime;

 58

 sctime = time; % start of new cycle
 if ctime > maxCycletime
 maxCycletime = ctime;
 end
 if DropPackFlag ~= 1
 sCycle = sCycle+1;
 end
 avgCycletime = (time/nCycle);
 else
 PDCount = PDCount+1;
 end
 URC = 0;
 SRQRC = 0;
 SRQFlag = 0;
 SRQerror = 0;
 DropPackFlag = 0;
 state = 2;
 [time,B,NEvent] = PCnode2(time,ST,SSpack,PPD(PDCount),NEvent);
 end
end

CT = [avgCycletime,maxCycletime,nCycle,sCycle];

///

The function of PollingS.m is called in the seastarsim.m function and is to

simulate the polling protocol without SRQ

% Function for <PollingS> uses the following input
% a. ST = Simulation Time
% b. SSpack(1) = TDP = Tx Time for a Data Packet
% c. SSpack(2) = TDSP = Tx Time for a Data Sub-packet
% d. SSpack(3) = TUP = Tx Time for a Utilities packet
% e. SSpack(4) = TCPUD = Delay time for modem CPU
% f. SSpack(6) = N = Number of nodes
% g. SSpack(7) = DB = Number of Data bytes
% h. PPD = An array of Propagation delay between nodes in sequence 1 to N
% i. SSpack(8) = Number of polling utilities bytes
% j. SSpack (9) = TTP = Tx time for a token ring
% k. SSpack(10) = TRB = Number of Token Ring bytes
% l. SSpack(11) = SPB = Number of subpacket bytes
%
% Output of <Polling> will consist of the following
% a. PSDP = Successful number of data packet
% b. PSUP = Successful number of Utilities sign

 59

% c. PSB = Successful number of byte Tx.
% d. PSPRT = Number of sub-packet re-transmitted.
% e. PFSP = Number of sub-packet failures with time of failure
% f. PFP = Number of packet failure with time of failure
% g. PFU = Number of failed utilites Tx failure with time log of failure
%
function [PSDP,PSUP,PSB,PFP,PFU,PTO,CT] = PollingS(ST,SSpack,PPD,EL)

%Ini Setup for function
time = 0; % Run time
sctime = 0; % Start Cycle time
nCycle = 0; % Number of cycle
sCycle = 0; % Number of Successful Cycle
maxCycletime = 0; % max time per cycle
avgCycletime = 0; % Average time per cycle
NEvent = 0; % Running number of Events
PSDP = 0; % Number of successful Data packet transmitted
PSUP = 0; % Number of successful Utilities packet transmitted
PSB = 0 ; % Number of Byte transmitted
PFP = 0; % Number of failed packet event
PFU = 0; % Number of failed Utility packet
PTO = 0; % Number of Time-Outs
maxRetry = 1; % Number of retries before Time-out.
N = SSpack(6); %Number of Nodes
PDCount = 2; % Propagation Delay Counter
ELU = EL(1); % Error Level of Utilities
ELP = EL(2); % Error Level of Data Packet
TUP = SSpack(3);
TCPU = SSpack(4);
TO = 1; % Additional delay
state = 1;
URC = 0; % Number of Utility Retries
MaxUR = maxRetry;
DropPackFlag = 0; % flagged if there's a dropped packet

%Main Program

while time <= ST
 switch state

 case 1
 [time,B,NEvent] = PCnode2(time,ST,SSpack,PPD(PDCount),NEvent);
 state = 2;

 60

 case 2
 PSUP = PSUP + 1;
 PSB = PSB + B;
 if AnyError(ELU) == true
 state = 4;
 PSB = PSB - B;
 PFU = PFU + 1;
 PSUP = PSUP - 1;
 time = time + TCPU+PPD(PDCount)+TUP+TO;
 else
 state = 3;
 [time,B,P,SP,U,NEvent] = PPnodeS(time,ST,SSpack,PPD(PDCount),NEvent);
 end

 case 3
 if AnyError(ELP) == true
 state = 5;
 PFP = PFP+1;
 DropPackFlag = 1;
 else
 PSB = PSB + B;
 PSDP = PSDP + P;
 PSUP = PSUP + U;
 state =5;
 end

 case 4
 if URC == MaxUR
 state = 5;
 PTO = PTO + 1;
 PFP = PFP+1;
 DropPackFlag = 1;
 else
 URC = URC + 1;
 PFU= PFU+1;
 state = 1;
 end

 case 5
 if PDCount == N
 PDCount = 2;
 nCycle = nCycle + 1;
 ctime = time - sctime;
 sctime = time; % start of new cycle

 61

 if ctime > maxCycletime
 maxCycletime = ctime;
 end
 if DropPackFlag ~= 1
 sCycle = sCycle+1;
 end
 avgCycletime = (time/nCycle);
 DropPackFlag = 0;
 else
 PDCount = PDCount+1;
 end
 URC = 0;
 state = 2;
 [time,B,NEvent] = PCnode2(time,ST,SSpack,PPD(PDCount),NEvent);
 end
end

CT = [avgCycletime,maxCycletime,nCycle,sCycle];

///

This function PPnode2 is used by Polling2.m function to clock the simulation run

time and the communication traffic from the peripheral nodes to the central node.

function [Clock,B,P,SP,U,NE] = PPnode2(Clock,ST,Pack,PPD,SRQ,SRQFlag,NE)

B=0;
P=0;
SP = 0;
U = 0;
TCPUD = Pack(4);
TDP = Pack(1);
TDSP = Pack(2);
TUP = Pack(3);
DB = Pack(7);
UB = Pack(8);
SPB = Pack(11);

Clock = Clock +TCPUD;
if Clock < ST
 Clock_S = Clock+TUP;
 if Clock_S < ST
 B = UB;
 U = 1;

 62

 if SRQFlag == 0
 Clock_S = Clock_S+TDP;
 if Clock_S < ST
 B = B+DB;
 P = 1;
 else
 B = B+DB-ceil((Clock_S-ST)/(TDP/DB));
 end
 else
 Clock_S = Clock_S+(TDSP*SRQ);
 if Clock_S < ST
 B = B+(SRQ*SPB);
 SP = SRQ;
 P = 1;
 else
 B = B+(SRQ*SPB) - ceil((Clock_S-ST)/((TDSP)/(SPB)));
 SP = SRQ - ceil((Clock_S-ST)/TDSP);
 end
 end
 else
 B = UB - ceil((Clock_S-ST)/(TUP/UB));
 end
 Clock = Clock_S+PPD;
end

///

This function PPnodeS.m is used by PollingS.m function to clock the simulation

run time and the communication traffic from the peripheral nodes to the central node.

function [Clock,B,P,SP,U,NE] = PPnodeS(Clock,ST,Pack,PPD,NE)

B=0;
P=0;
SP = 0;
U = 0;
TCPUD = Pack(4);
TDP = Pack(1);
TUP = Pack(3);
DB = Pack(7);
UB = Pack(8);

Clock = Clock +TCPUD;
if Clock < ST
 Clock_S = Clock+TUP;
 if Clock_S < ST

 63

 B = UB;
 U = 1;
 Clock_S = Clock_S+TDP;
 if Clock_S < ST
 B = B+DB;
 P = 1;
 else
 B = B+DB-ceil((Clock_S-ST)/(TDP/DB));
 end
 else
 B = UB - ceil((Clock_S-ST)/(TUP/UB));
 end
 Clock = Clock_S+PPD;
end

///

This function PCnode2.m is used by both Polling2.m and PollingS.m functions to

clock the simulation run time and the communication traffic from the central to the

peripheral node.

function [Clock,B,NE] = PCnode2(Clock,S,Pack,PPD,NE)

B=0;
TCPUD = Pack(4);
TUP = Pack(3);
UB = Pack(8);

Clock = Clock+TCPUD;
if Clock < S
 Clock_S = Clock+TUP;
 if Clock_S > S
 B = ceil((Clock_S - S)/(TUP/UB));

 else
 B = UB;
 Clock_S = Clock_S+PPD;
 end
 Clock = Clock_S;
end

///

 64

The function TokenH.m is called in the seastarsim.m function and is used to

simulate the token ring with SRQ protocol.

% Function for <TokenH> uses the following input
% a. ST = Simulation Time
% b. SSpack(1) = TDP = Tx Time for a Data Packet
% c. SSpack(2) = TDSP = Tx Time for a Data Sub-packet
% d. SSpack(3) = TUP = Tx Time for a Utility packet
% e. SSpack(4) = TCPUD = Delay time for modem CPU
% f. SSpack(7) = DB = Number of Data bytes
% g. SSpack(8) = UB = Number of Utility bytes
% h. TDO = A array of Propagation delay between nodes in sequence 1 to N
% i. SSpack(9) = TTP = Tx time for a token ring
% k. SSpack(10) = RB = Number of Token Ring bytes.
%
% Output of <Token> will consist of the following
% a. TSDP = Successful number of data packet
% b. TSUP = Successful number of Utilities sign
% c. TSB = Successful number of byte Tx.
% d. TSPRT = Number of sub-packet re-transmitted.
% e. TFSP = Number of sub-packet failure with time of failures
% f. TFP = Number of packet failure with time of failures
% g. TFU = Number of failed utilities Tx failures with time log of failure
%
function [TSDP,TSTP,TSB,TSPRT,TFP,TFSP,TFU,TTO,CT] =
TokenH(ST,SSpack,TDO,EL)

Log = [];

%Ini Setup for Token function
time = 0; %Run time
sctime = 0; % Start cycle time
NE = 0; % Running Number of Events
TSDP = 0; % Number of successful Data packets transmitted
TSTP = 0; % Number of successful Token packets transmitted
TSB = 0 ; % Number of Bytes transmitted
TSPRT = 0; % Number of sub-packet retransmitted
TFP = 0; % Number of failed packet event
TFSP =0; % Number of failed sub-packet
TFU = 0; % Number of failed Utilities
TTO = 0; % Number of time-outs
nCycle = 0; % Number of cycles
sCycle = 0;
avgCycletime = 0; % Average time per cycle
maxCycletime = 0; % max time per cycle

 65

maxSRQ = 16;
maxRetry = 3;% Number of SRQ retries
N = size(TDO,2); %Number of Nodes
NCount = 2; % Counter for Node
TCPU = SSpack(4); %CPU Wake-up time
TDP = SSpack(1); %Time for Tx of a data packet
TTok = SSpack(9); % Time for Tx of a token
TB = SSpack(10); % Number of Token Bytes
TSPB = SSpack(11); % Number of Byte per subpacket
Time_CP = TDO(2,:); % Matrix of time from central node to peripheral Node
state = 1;
TCompute = .3; %Central node CPU Computational time.
TO = 1; %additional time-out wait
ELU = EL(1); % Error Level of Utilities
ELP = EL(2); % Error Level of Data Packet
DropPackFlag = 0; % flagged if there's a dropped packet

% Create a look-up matrix of transmission time for each node
% consisting of propagation delay, Token, Full Data Tx, Delays

TX_Table = zeros(4,N);
TX_Table(1,:) = max(TDO,[],1); % Time taken to propagate to next node
TX_Table(2,:) = TTok; % Time taken to transmit a token
TX_Table(3,2:N) = TDP; % Time take to transmit a data packet
TX_Table(4,:) = TCPU; % Time take for CPU delay
TX_Table(4,1) = TX_Table(4,1) + TCompute; % additional computational time for
central node

Tx_time = sum(TX_Table,1);

Time_CP = Time_CP + TTok+TCPU; %Time taken to Tx a token from Central node to
Peripheral node

% Create an array of number of SRQ Required (if any) and set as zero

N_SRQ = zeros(1,N);

% Create a matrix of flags to indicate error occurrances during Token and Data Tx

while time <= ST
 switch state

 case 1
 [time,B,NE] = TCRing(time,ST,SSpack,Time_CP,Log,NE,NCount);
 if AnyError(ELU) == true;

 66

 state = 2;
 else
 state = 3;
 TSTP = TSTP + 1;
 TSB = TSB + B;
 end

 case 2
 time = time + TDO(2,NCount) + TO;
 N_SRQ(NCount) = maxSRQ;
 NCount = NCount+1;
 if NCount > N
 state = 4; %Last node reached, go to error correction
 NCount = 2;
 else
 state = 1; %Sent Token from CNode to next PNode
 end

 case 3
 [time,B,P,SP,NE] = TPHRing(time,ST,SSpack,Tx_time,Log,NE,NCount);
 if time > ST
 TSDP = TSDP + P;
 TSB = TSB + B;
 else
 if AnyError(ELP) == true %On Data Tx time
 N_SRQ(NCount) = ceil(random('unif',1,maxSRQ));
 TSDP = TSDP - 1;
 TSB = TSB - (N_SRQ(NCount)*TSPB);
 end
 TSDP = TSDP + P;
 TSB = TSB + B;
 NCount = NCount + 1;
 if NCount > N
 state = 4; %Last node reached, go to error correction
 NCount = 2;
 else
 if AnyError(ELU) == true % On Token tx time
 state = 2;
 TSB = TSB - TB;
 else
 TSTP = TSTP + 1;
 state = 3;
 end
 end
 end

 67

 case 4
 NSRQ = N_SRQ(NCount);
 if NSRQ == 0 % No SRQ Required
 NCount = NCount + 1;
 if NCount > N
 state = 5; % Go to restart
 else
 state = 4;
 end
 else
 time = time + TCPU;
 [time,TOFlag,B,SP] =
ARQ(SSpack,TDO(2,NCount),NSRQ,maxRetry,time,EL);
 if TOFlag ~= 0
 TFP = TFP + 1;
 TTO = TTO + 1;
 DropPackFlag = 1;
 else
 TSDP = TSDP + 1;
 TSB = TSB + B;
 TSPRT = TSPRT + SP;
 end
 NCount = NCount + 1;
 if NCount > N
 state = 5; %Go to restart
 else
 state = 4;
 end
 end

 case 5
 NCount = 2;
 nCycle = nCycle + 1;
 ctime = time - sctime;
 sctime = time; % start a new cycle
 if ctime > maxCycletime
 maxCycletime = ctime;
 end
 if DropPackFlag ~= 1
 sCycle = sCycle +1;
 end
 avgCycletime = (time/nCycle);
 DropPackFlag = 0;
 N_SRQ = zeros(1,N);

 68

 state = 1;
 end
end

CT = [avgCycletime,maxCycletime,nCycle,sCycle];

///

This function TokenS.m is called in the seastarsim.m function and is to simulate

the token ring without SRQ.

% Function for <TokenS> uses the following input
% a. ST = Simulation Time
% b. SSpack(1) = TDP = Tx Time for a Data Packet
% c. SSpack(2) = TDSP = Tx Time for a Data Sub-packet
% d. SSpack(3) = TUP = Tx Time for a Utility packet
% e. SSpack(4) = TCPUD = Delay time for modem CPU
% f. SSpack(7) = DB = Number of Data bytes
% g. SSpack(8) = UB = Number of Utility bytes
% h. TDO = an array of Propagation delay between nodes in sequence 1 to N
% i. SSpack(9) = TTP = Tx time for a token ring
% k. SSpack(10) = RB = Number of Token Ring bytes.
%
% Output of <Token> will consist of the following:
% a. TSDP = Successful number of data packets
% b. TSUP = Successful number of Utilities sign
% c. TSB = Successful number of byte Tx.
% d. TSPRT = Number of sub-packets re-transmitted.
% e. TFSP = Number of sub-packets failure. with time of failure
% f. TFP = Number of packets failure with time of failure
% g. TFU = Number of failed utility Tx failures with time log of failure
%
function [TSDP,TSTP,TSB,TFP,TFU,CT] = TokenS(ST,SSpack,TDO,EL)

%Ini Setup for Token function
time = 0; %Run time
sctime = 0; % Start cycle time
TErrorFlag = 0; % Token Error Flag
NE = 0; % Running Number of Events
TSDP = 0; % Number of successful Data packets transmitted
TSTP = 0; % Number of successful Token packets transmitted
TSB = 0 ; % Number of Byte transmitted
TFP = 0; % Number of failed packets event
TFU = 0; % Number of failed Utility packet
nCycle = 0; % Number of cycle

 69

sCycle = 0; % Number of Successful Cycle
avgCycletime = 0; % Average time per cycle
maxCycletime = 0; % max time per cycle
N = size(TDO,2); %Number of Nodes
NCount = 2; % Counter for Node
TCPU = SSpack(4); %CPU Wake up time
TDP = SSpack(1); %Time for Tx a data packets
TTok = SSpack(9); % Time for Tx a token
TB = SSpack(10); % Number of Token Bytes
TDPB = SSpack(7); % Number of Bytes per subpackets
Time_CP = TDO(2,:); % Matrix of time from central node to Peripheral Node
state = 1;
TCompute = .3; %Central node CPU Computational time.
TO = 1; %additional time-out wait
ELU = EL(1); % Error Level of Utilities
ELP = EL(2); % Error Level of Data Packet
DropPackFlag = 0; % flaged if there's a dropped packet

% Create a look up matrix of transmission time for each node
% consisting of propagation delay, Token, Full Data Tx, Delays

TX_Table = zeros(4,N);
TX_Table(1,:) = max(TDO,[],1); % Time taken to propagate to next node
TX_Table(2,:) = TTok; % Time taken to transmit a token
TX_Table(3,2:N) = TDP; % Time take to transmit a data packets
TX_Table(4,:) = TCPU; % Time take for CPU delay
TX_Table(4,1) = TX_Table(4,1) + TCompute; % additional computational time for
central node

Tx_time = sum(TX_Table,1);

Time_CP = Time_CP + TTok+TCPU; %Time taken to Tx a token from Central node to
Peripheral node

% Create an array of number of SQR Required (if any) and set as zero

% Create a matrix of flag to indicate error occurances during Token and Data Tx

while time <= ST
 switch state

 case 1
 [time,B,NE] = TCRing(time,ST,SSpack,Time_CP,Log,NE,NCount);
 if AnyError(ELU) == true;

 70

 state = 2;
 TFU = TFU + 1;
 DropPackFlag = 1;
 else
 state = 3;
 TSTP = TSTP + 1;
 TSB = TSB + B;
 end

 case 2
 time = time + TDO(2,NCount) + TO;
 TFP = TFP + 1;
 NCount = NCount+1;
 if NCount > N
 state = 4; %Last node reached
 NCount = 2;
 else
 state = 1; %Sent Token from CNode to next PNode
 end

 case 3
 [time,B,P,SP,NE] = TPHRing(time,ST,SSpack,Tx_time,Log,NE,NCount);
 if time > ST
 TSDP = TSDP + P;
 TSB = TSB + B;
 else
 if AnyError(ELP) == true %On Data Tx time
 TSDP = TSDP - 1;
 TSB = TSB - TDPB;
 DropPackFlag = 1;
 end
 TSDP = TSDP + P;
 TSB = TSB + B;
 NCount = NCount+1;
 if AnyError(ELU) == true % On Token Tx time
 TFU = TFU+1;
 DropPackFlag = 1;
 if NCount > N
 state = 4;
 TErrorFlag = 1;
 else
 state = 2;
 end
 TSB = TSB - TB;
 else

 71

 if NCount > N
 state = 4;
 else
 state = 3;
 TSTP = TSTP +1;
 end
 end
 end

 case 4
 NCount = 2;
 nCycle = nCycle + 1;
 ctime = time - sctime;
 sctime = time; % start a new cycle
 if ctime > maxCycletime
 maxCycletime = ctime;
 end
 if DropPackFlag ~= 1
 sCycle = sCycle+1;
 end
 avgCycletime = (time/nCycle);
 DropPackFlag = 0;
 if TErrorFlag == 1
 state = 2;
 TErrorFlag = 0;
 else
 state = 3;
 end
 end
end

CT = [avgCycletime,maxCycletime,nCycle,sCycle];
///

This function TPHRing.m is used by both the TokenH.m and TokenS.m function

to clock the simulation time and the communication traffic between each peripheral

nodes.

function [Clock,B,P,SP,NE] = TPHRing(Clock,ST,Pack,Tx,Log,NE,NC)

B=0;
P=0;
SP = 0;
TCPUD = Pack(4);
TDP = Pack(1);

 72

TTP = Pack(9);
DB = Pack(7);
RB = Pack(10);
state = 1;
Endstate = 0;

Clock_S = Clock +TCPUD;
while Endstate == 0
 switch state

 case 1
 Clock_S = Clock + TDP;
 if Clock_S > ST
 B = B+floor((ST - Clock)/(TDP/DB));
 state = 4; %End State
 else
 B = B+DB;
 P = P+1;
 state = 2;
 end

 case 2
 Clock_S = Clock_S+TTP;
 if Clock_S > ST
 B = floor((ST-Clock)/(TTP/RB));
 state = 4;
 else
 B = B+RB;
 state = 3;
 end

 case 3
 Clock = Clock+Tx(NC)-TCPUD;
 Endstate = 1;

 case 4
 Clock = Clock_S;
 Endstate = 1;
 end
end

///

 73

This function TCRing.m is used by both the TokenH.m and TokenS.m function to

clock the simulation time and the communication traffic between the central node and the

peripheral nodes.

function [Clock,B,NE] = TCRing(Clock,S,Pack,Tk,Log,NE,NC)

B=0;
TCPUD = Pack(4);
TTP = Pack(9);
RB = Pack(10);

Clock = Clock+TCPUD;
if Clock < S
 Clock_S = Clock+TTP;
 if Clock_S > S
 B = floor((S - Clock)/(TTP/RB));
 else
 B = RB;
 end
 Clock = Clock + Tk(NC);
end

///

This function ARQ.m is used by the function TokenH.m to generate SRQ events

when the token returns to the central node after each cycle.

%This function take in the following
%Spack contains the necessary information.
%SPack(2) = TimeDSP = Tx time per data sub-packets
%Spack(3) = TimeUtil = Tx time per utilities packets
%Spack(4) = TCPU = CPU wake-up and computation time
%Spack(10) = UB = No. of Utilities bytes
%Spack(11) = SB = No. of Sub-packets bytes
%TimeDelay = Propagation delay between the two nodes
%NSRQ = Number of SRQ packets required
%time = run time clock
%
% The function returns the following
%TOFlag = Time-Out Flag
%B = Number of byte successfully transmitted
%SP = Number of sub-packet successfully transmitted
function [time,TOFlag,B,SP] = ARQ(Spack,TimeDelay,NSRQ,MaxTry,time,EL)

TimeDSP = Spack(2);

 74

TimeUtil = Spack(3);
TCPU = Spack(4);
UB = Spack(10);
SB = Spack(11);
Try = 1;
TOFlag = 0;
Endflag = 0;
B = 0;
SP = 0;
state = 1;
ELU = EL(1); % Error Level of Utilities
ELP = EL(2); % Error Level of Data Packet

while Endflag < 1
 switch state

 case 1
 %Send SRQ to Pnode
 time = time + TimeUtil + TimeDelay;
 if AnyError(ELU) == true;
 time = time + TimeDelay + TCPU + (TimeDSP*NSRQ); %Wait time for data
return
 Try = Try + 1;
 if Try > MaxTry
 state = 4;
 else
 state = 1;
 end
 else
 B = B + UB;
 state = 2;
 end

 case 2 %Send Data to Cnode
 time = time + (TimeDSP*NSRQ) + TCPU + TimeDelay;
 if AnyError(ELP) == true;
 Try = Try + 1;
 if Try > MaxTry
 state = 4;
 else
 PNSRQ = NSRQ;
 NSRQ = ceil(random('unif',1,NSRQ));
 B = B + (PNSRQ - NSRQ)*SB;
 SP = SP + PNSRQ - NSRQ;
 state = 1;

 75

 end
 else
 B = B + (NSRQ*SB);
 SP = SP + NSRQ;
 state = 3;
 end

 case 3
 Endflag = 1;

 case 4
 TOFlag = 1;
 Endflag = 1;
 end
end

///

This function AnyError.m will return a logic True when the random uniform

generator exceed the EL level. It is used to generate the error inthe program.

function [AE] = AnyError(EL)

AE = EL > random('unif',0,1);

///

The function of seastarsim.m is to run the same set of input through the four

different protocols and collect the result for analysis

function [Result] = seastarsim(SR,STH,NoNode,NGPos,EL)

[SSpack] = iniSeaStar;
SSpack(6) = NoNode;
NPos = NGPos;

% Call a function <GridNode> with a given matrix input of the
% node position and convert it into a grid of 1000m by 1000m.
% Output of the function <MapNode> will consist of the grid position of
% the node and the distance between all the nodes.

NGrid = GridNode(SSpack(6),NPos);

 76

% Call a function <Proptime> with input consisiting of output of MapNode
% and sound speed in order to calculate the propagation delay between the
% nodes.
% Output of the function <Proptime> will consist of the grid position of
% the node and the propagation time delay between the nodes.

TPropDelay = PropTime(SSpack(6),SSpack(5),NGrid);

% Call function <TkRing> with input of TProgDelay and Number of nodes and
% output the order that will minimize the delay.
[TRorder,TRDelayOrder] = TkRing(TPropDelay,SSpack(6));

%Obtain the Propagation delay for Polling
PPropDelay = TPropDelay(3,:);

% Set simulation time <SimTime> in Hours
SimTimeHours = STH;

%Convert SimTime to seconds
SimTime = SimTimeHours*3600;

% Load number of simulation
Simrun = SR;
Prun = zeros(Simrun,12);
PSrun = zeros(Simrun,10);
Trun = zeros(Simrun,12);
TSrun = zeros(Simrun,9);

% Run simulation for <Polling> for the above initialization and noise.

for i = 1:Simrun
 [PsSDP,PsSUP,PsSB,PsFP,PsFU,PsTO,CT] = PollingS(SimTime,SSpack,...
 PPropDelay,EL);

 PSrun(i,:) = [PsSDP,PsSUP,PsSB,PsFP,PsFU,PsTO,CT];

 [PSDP,PSUP,PSB,PSPRT,PFP,PFSP,PFU,PTO,CT] = Polling2(SimTime,SSpack,...
 PPropDelay,EL);

 Prun(i,:) = [PSDP,PSUP,PSB,PSPRT,PFP,PFSP,PFU,PTO,CT];

% Run simulation for <TokenH> for the above initialization and noise.

[TSDP,TSTP,TSB,TSPRT,TFP,TFSP,TFU,TTO,CT] =

 77

TokenH(SimTime,SSpack,TRDelayOrder,EL);

 Trun(i,:) = [TSDP,TSTP,TSB,TSPRT,TFP,TFSP,TFU,TTO,CT];

% Run Simulation for <TokenS> as simple Token ring format
 [STSDP,STSTP,STSB,STFP,STFU,CT] =
TokenS(SimTime,SSpack,TRDelayOrder,EL);

 TSrun(i,:) = [STSDP,STSTP,STSB,STFP,STFU,CT];

end

% Generate a summary.

Result = zeros(4,14);

% Polling Simple Run
SumPSrun = sum(PSrun,1);
MaxPSrun = max(PSrun,[],1);
MinPSrun = min(PSrun,[],1);
PSAvgTimePerCycle = SumPSrun(7)/Simrun;
PSMinAvgTimePerCycle = MinPSrun(7);
PSMaxAvgTimePerCycle = MaxPSrun(7);
PSAvgMaxTimePerCycle = SumPSrun(8)/Simrun;
PSMinAMaxTimePerCycle = MinPSrun(8);
PSMaxAMaxTimePerCycle = MaxPSrun(8);

ThroughPut_PSPacket = (SumPSrun(1)*3600/(SimTime*Simrun))*24; %packets/day
ThroughPut_PSData = (SSpack(12)*SumPSrun(1))/(SimTime*Simrun); %byte/sec
ThroughPut_PSUtil = (SSpack(8)*SumPSrun(2))/(SimTime*Simrun); %byte/sec
Total_PSByte = SumPSrun(3);

Dropped_PSData = SSpack(7)*SumPSrun(4)/Simrun;
Dropped_PSPData = (SumPSrun(4)*3600/(SimTime*Simrun))*24;

Channel_PSData = (ThroughPut_PSData/SSpack(13))*100; % % of Channel Utilization

nCycle_PS = (SumPSrun(9)*3600/(SimTime*Simrun))*24; %Total Cycles/day
sCycle_PS = (SumPSrun(10)*3600/(SimTime*Simrun))*24; % Total Successful
Cycles/day

Result(1,:) =
[PSAvgTimePerCycle,PSMinAvgTimePerCycle,PSMaxAvgTimePerCycle,...
 PSAvgMaxTimePerCycle,PSMinAMaxTimePerCycle,PSMaxAMaxTimePerCycle,...

 78

 ThroughPut_PSPacket,ThroughPut_PSData,ThroughPut_PSUtil,Dropped_PSPData,...
 Total_PSByte,Channel_PSData,nCycle_PS,sCycle_PS];

% Polling with SRQ Run
SumPrun = sum(Prun,1);
MaxPrun = max(Prun,[],1);
MinPrun = min(Prun,[],1);
PAvgTimePerCycle = SumPrun(9)/Simrun;
PMinAvgTimePerCycle = MinPrun(9);
PMaxAvgTimePerCycle = MaxPrun(9);
PAvgMaxTimePerCycle = SumPrun(10)/Simrun;
PMinAMaxTimePerCycle = MinPrun(10);
PMaxAMaxTimePerCycle = MaxPrun(10);

ThroughPut_PPacket = (SumPrun(1)*3600/(SimTime*Simrun))*24; %packets/day
ThroughPut_PData = (SSpack(12)*SumPrun(1))/(SimTime*Simrun);
ThroughPut_PUtil = (SSpack(8)*SumPrun(2))/(SimTime*Simrun);
Total_PByte = SumPrun(3);

Dropped_PData = SSpack(7)*SumPrun(8)/Simrun;
Dropped_PPData =(SumPrun(8)*3600/(SimTime*Simrun))*24;

Channel_PData = (ThroughPut_PData/SSpack(13))*100; % % of Channel Utilization

nCycle_P = (SumPrun(11)*3600/(SimTime*Simrun))*24; %Total Cycles/day
sCycle_P = (SumPrun(12)*3600/(SimTime*Simrun))*24; % Total Successful Cycles/day

Result(2,:) = [PAvgTimePerCycle,PMinAvgTimePerCycle,PMaxAvgTimePerCycle,...
 PAvgMaxTimePerCycle,PMinAMaxTimePerCycle,PMaxAMaxTimePerCycle,...
 ThroughPut_PPacket,ThroughPut_PData,ThroughPut_PUtil,Dropped_PPData,...
 Total_PByte,Channel_PData,nCycle_P,sCycle_P];

% Token Simple run
SumSTrun = sum(TSrun,1);
MaxSTrun = max(TSrun,[],1);
MinSTrun = min(TSrun,[],1);
STAvgTimePerCycle = SumSTrun(6)/Simrun;
STMinAvgTimePerCycle = MinSTrun(6);
STMaxAvgTimePerCycle = MaxSTrun(6);
STAvgMaxTimePerCycle = SumSTrun(7)/Simrun;
STMinAMaxTimePerCycle = MinSTrun(7);
STMaxAMaxTimePerCycle = MaxSTrun(7);

ThroughPut_STPacket = (SumSTrun(1)*3600/(SimTime*Simrun))*24; %packets/day
ThroughPut_STData = (SSpack(12)*SumSTrun(1))/(SimTime*Simrun);

 79

ThroughPut_STUtil = (SSpack(8)*SumSTrun(2))/(SimTime*Simrun);
Total_STByte = SumSTrun(3);

Dropped_STData = SSpack(7)*SumSTrun(4)/Simrun;
Dropped_STPData = (SumSTrun(4)*3600/(SimTime*Simrun))*24;

Channel_STData = (ThroughPut_STData/SSpack(13))*100; % % of Channel Utilization

nCycle_ST = (SumSTrun(8)*3600/(SimTime*Simrun))*24; %Total Cycles/day
sCycle_ST = (SumSTrun(9)*3600/(SimTime*Simrun))*24; % Total Successful
Cycles/day

Result(3,:) =
[STAvgTimePerCycle,STMinAvgTimePerCycle,STMaxAvgTimePerCycle,...
 STAvgMaxTimePerCycle,STMinAMaxTimePerCycle,STMaxAMaxTimePerCycle,...
 ThroughPut_STPacket,ThroughPut_STData,ThroughPut_STUtil,Dropped_STPData,...
 Total_STByte,Channel_STData,nCycle_ST,sCycle_ST];

% Token with SRQ run
SumTrun = sum(Trun,1);
MaxTrun = max(Trun,[],1);
MinTrun = min(Trun,[],1);
TAvgTimePerCycle = SumTrun(9)/Simrun;
TMinAvgTimePerCycle = MinTrun(9);
TMaxAvgTimePerCycle = MaxTrun(9);
TAvgMaxTimePerCycle = SumTrun(10)/Simrun;
TMinAMaxTimePerCycle = MinTrun(10);
TMaxAMaxTimePerCycle = MaxTrun(10);

ThroughPut_TPacket = (SumTrun(1)*3600/(SimTime*Simrun))*24; %packets/day
ThroughPut_TData = (SSpack(12)*SumTrun(1))/(SimTime*Simrun);
ThroughPut_TUtil = (SSpack(8)*SumTrun(2))/(SimTime*Simrun);
Total_TByte = SumTrun(3);

Dropped_TData = SSpack(7)*SumTrun(8)/Simrun;
Dropped_TPData = (SumTrun(8)*3600/(SimTime*Simrun))*24;

Channel_TData = (ThroughPut_TData/SSpack(13))*100; % % of Channel Utilization

nCycle_T = (SumTrun(11)*3600/(SimTime*Simrun))*24; %Total Cycles/day
sCycle_T = (SumTrun(12)*3600/(SimTime*Simrun))*24; % Total Success Cycles/day

Result(4,:) = [TAvgTimePerCycle,TMinAvgTimePerCycle,TMaxAvgTimePerCycle,...
 TAvgMaxTimePerCycle,TMinAMaxTimePerCycle,TMaxAMaxTimePerCycle,...
 ThroughPut_TPacket,ThroughPut_TData,ThroughPut_TUtil,Dropped_TPData,...

 80

 Total_TByte,Channel_TData,nCycle_T,sCycle_T];

///

This function iniGrid.m is called in the SeaStarWNodesSim main prgram to

initialize the grid layout of nodes.

function [Linear,Circle] = iniGrid

Linear = cell(7,1);
Circle = cell(7,1);

Linear{1} = [0,250,500;0,0,0];
Linear{2} = [0,167,333,500;0,0,0,0];
Linear{3} = [0,125,250,375,500;0,0,0,0,0];
Linear{4} = [0,100,200,300,400,500;0,0,0,0,0,0];
Linear{5} = [0,-500,-333,-167,167,333,500;0,0,0,0,0,0,0];
Linear{6} = [0,-500,-333,-167,125,250,375,500;0,0,0,0,0,0,0,0];
Linear{7} = [0,-500,-375,-250,-125,125,250,375,500;0,0,0,0,0,0,0,0,0];

Circle{1} = [0,217,-217;0,450,450];
Circle{2} = [0,0,250,-250;0,289,-144,-144];
Circle{3} = [0,0,354,0,-354;0,354,0,-354,0];
Circle{4} = [0,0,405,250,-250,-405;0,425,131,-344,-344,131];
Circle{5} = [0,250,500,250,-250,-500,-250;0,433,0,-433,-433,0,433];
Circle{6} = [0,0,391,487,217,-217,-487,-391;0,500,312,-111,-450,-450,-111,312];
Circle{7} = [0,0,354,500,354,0,-354,-500,-354;0,500,354,0,-354,-500,-354,0,354];

///

 This is a one of two main program name SeaStarWNodesSim to compute

collect the data for 3 to 9 number of nodes.

% This program gives seastarsim.m two different geometrical layout and a set of number
of nodes to simulate

clear

SimTimeHours = 6;
Simrun = 150;
ErrorL = [0.0005,0.2];

[Lin,Cir] = iniGrid;

Count = size(Lin,1);

 81

CPS = zeros(Count,14);
CPH = zeros(Count,14);
CTS = zeros(Count,14);
CTH = zeros(Count,14);
LPS = zeros(Count,14);
LPH = zeros(Count,14);
LTS = zeros(Count,14);
LTH = zeros(Count,14);

for a = 1:Count
 xy = Cir{a};
 N = size(xy,2);
 [Return] = seastarsim(Simrun,SimTimeHours,N,xy,ErrorL);
 CPS(a,:) = Return(1,:);
 CPH(a,:) = Return(2,:);
 CTS(a,:) = Return(3,:);
 CTH(a,:) = Return(4,:);
 xyl = Lin{a};
 NL = size(xyl,2);
 [Return] = seastarsim(Simrun,SimTimeHours,NL,xyl,ErrorL);
 LPS(a,:) = Return(1,:);
 LPH(a,:) = Return(2,:);
 LTS(a,:) = Return(3,:);
 LTH(a,:) = Return(4,:);

end

NN = 3:9;

figure(1)
plot(NN,CPS(:,1),'co-');
hold on
plot(NN,CPH(:,1),'bx-');
plot(NN,CTS(:,1),'g+-');
plot(NN,CTH(:,1),'m*-');
plot(NN,LPS(:,1),'co-.');
plot(NN,LPH(:,1),'bx-.');
plot(NN,LTS(:,1),'g+-.');
plot(NN,LTH(:,1),'m*-.');
hold off
xlabel('Number of Nodes');ylabel('Time (sec)');title('Average Time Per Cycle vs Number
of Nodes @ EL = 0.2');
legend('C. Polling','C. Polling with SRQ','C. Token',...

 82

 'C. Token with SRQ','L. Polling','L. Polling with SRQ',...
 'L. Token','L. Token with SRQ','Location','NorthWest');

figure(2)
plot(NN,CPS(:,4),'co-');
hold on
plot(NN,CPH(:,4),'bx-');
plot(NN,CTS(:,4),'g+-');
plot(NN,CTH(:,4),'m*-');
plot(NN,LPS(:,4),'co-.');
plot(NN,LPH(:,4),'bx-.');
plot(NN,LTS(:,4),'g+-.');
plot(NN,LTH(:,4),'m*-.');
hold off
xlabel('Number of Nodes');ylabel('Time (sec)');title('Max Time Per Cycle vs Number of
Nodes @ EL = 0.2');
legend('C. Polling','C. Polling with SRQ','C. Token',...
 'C. Token with SRQ','L. Polling','L. Polling with SRQ',...
 'L. Token','L. Token with SRQ','Location','NorthWest');

figure(3)
plot(NN,CPS(:,7),'co-');
hold on
plot(NN,CPH(:,7),'bx-');
plot(NN,CTS(:,7),'g+-');
plot(NN,CTH(:,7),'m*-');
plot(NN,LPS(:,7),'co-.');
plot(NN,LPH(:,7),'bx-.');
plot(NN,LTS(:,7),'g+-.');
plot(NN,LTH(:,7),'m*-.');
hold off
xlabel('Number of Nodes');ylabel('Number of Packet (per day)');title('Throughput for
Packet vs Number of Nodes @ EL = 0.2');
legend('C. Polling','C. Polling with SRQ','C. Token',...
 'C. Token with SRQ','L. Polling','L. Polling with SRQ',...
 'L. Token','L. Token with SRQ','Location','Best');

figure(4)
plot(NN,CPS(:,8),'co-');
hold on
plot(NN,CPH(:,8),'bx-');
plot(NN,CTS(:,8),'g+-');
plot(NN,CTH(:,8),'m*-');
plot(NN,LPS(:,8),'co-.');
plot(NN,LPH(:,8),'bx-.');

 83

plot(NN,LTS(:,8),'g+-.');
plot(NN,LTH(:,8),'m*-.');
hold off
xlabel('Number of Nodes');ylabel('Number of Data Byte Per Sec');title('Throughput Data
vs Number of Nodes @ EL = 0.2');
legend('C. Polling','C. Polling with SRQ','C. Token',...
 'C. Token with SRQ','L. Polling','L. Polling with SRQ',...
 'L. Token','L. Token with SRQ','Location','Best');

figure(5)
plot(NN,CPS(:,10),'co-');
hold on
plot(NN,CPH(:,10),'bx-');
plot(NN,CTS(:,10),'g+-');
plot(NN,CTH(:,10),'m*-');
plot(NN,LPS(:,10),'co-.');
plot(NN,LPH(:,10),'bx-.');
plot(NN,LTS(:,10),'g+-.');
plot(NN,LTH(:,10),'m*-.');
hold off
xlabel('Number of Nodes');ylabel('Number of Dropped packet (per day)');title('Dropped
Data vs Number of Nodes @ EL = 0.2');
legend('C. Polling','C. Polling with SRQ','C. Token',...
 'C. Token with SRQ','L. Polling','L. Polling with SRQ',...
 'L. Token','L. Token with SRQ','Location','East');

figure(6)
plot(NN,CPS(:,12),'co-');
hold on
plot(NN,CPH(:,12),'bx-');
plot(NN,CTS(:,12),'g+-');
plot(NN,CTH(:,12),'m*-');
plot(NN,LPS(:,12),'co-.');
plot(NN,LPH(:,12),'bx-.');
plot(NN,LTS(:,12),'g+-.');
plot(NN,LTH(:,12),'m*-.');
hold off
xlabel('Number of Nodes');ylabel('Channel Utilization Rate (%)');
title('Channel Utilization Rate vs Number of Nodes @ EL = 0.2');
legend('C. Polling','C. Polling with SRQ','C. Token',...
 'C. Token with SRQ','L. Polling','L. Polling with SRQ',...
 'L. Token','L. Token with SRQ','Location','Best');

 84

figure(7)
plot(NN,CPS(:,14),'co-');
hold on
plot(NN,CPH(:,14),'bx-');
plot(NN,CTS(:,14),'g+-');
plot(NN,CTH(:,14),'m*-');
plot(NN,LPS(:,14),'co-.');
plot(NN,LPH(:,14),'bx-.');
plot(NN,LTS(:,14),'g+-.');
plot(NN,LTH(:,14),'m*-.');
hold off
xlabel('Number of Nodes');ylabel('Cycle (per day');
title('Error Free Cycle vs Number of Nodes @ EL = 0.2');
legend('C. Polling','C. Polling with SRQ','C. Token',...
 'C. Token with SRQ','L. Polling','L. Polling with SRQ',...
 'L. Token','L. Token with SRQ','Location','NorthEast');

///

This is the second of two main program named SeaStarWError which is used to

measure the varying degree of error rate for a 7 nodes network.

% This program gives seastarsim.m a error level set to run
clear

SimTimeHours = 6;
Simrun = 100;
ELP = [0,0.05,0.1,0.2,0.4,0.6,0.8]; %Error Lvl of Data Packet
ELU = ELP./400; %Error lvl of Util packet

% 6 peripheral nodes circle
xy = [0,0,0,433,-433,433,-433;
 0,500,-500,250,250,-250,-250];
N = size(xy,2);

% Other ini
b = size(ELP,2);
CPS = zeros(b,14);
CPH = zeros(b,14);
CTS = zeros(b,14);
CTH = zeros(b,14);

for a = 1:b

 85

 ErrorL = [ELU(a),ELP(a)];
 [Return] = seastarsim(Simrun,SimTimeHours,N,xy,ErrorL);
 CPS(a,:) = Return(1,:);
 CPH(a,:) = Return(2,:);
 CTS(a,:) = Return(3,:);
 CTH(a,:) = Return(4,:);
end

figure(1)
plot(ELP,CPS(:,1),'co-');
hold on
plot(ELP,CPH(:,1),'bx-');
plot(ELP,CTS(:,1),'g+-');
plot(ELP,CTH(:,1),'m*-');
hold off
xlabel('Error Level');ylabel('Time (sec)');title('Average Time Per Cycle vs Error Rate');
legend('Polling','Polling with SRQ','Token',...
 'Token with SRQ','Location','NorthWest');
xlim([0,0.8]);

figure(2)
plot(ELP,CPS(:,4),'co-');
hold on
plot(ELP,CPH(:,4),'bx-');
plot(ELP,CTS(:,4),'g+-');
plot(ELP,CTH(:,4),'m*-');
hold off
xlabel('Error Level');ylabel('Time (sec)');title('Max Time Per Cycle vs Error Rate');
legend('Polling','Polling with SRQ','Token',...
 'Token with SRQ','Location','NorthWest');
xlim([0,0.8]);

figure(3)
plot(ELP,CPS(:,7),'co-');
hold on
plot(ELP,CPH(:,7),'bx-');
plot(ELP,CTS(:,7),'g+-');
plot(ELP,CTH(:,7),'m*-');
hold off
xlabel('Error Level');ylabel('Number of Packet (per day)');title('Throughput for Packet vs
Error Rate');
legend('Polling','Polling with SRQ','Token',...
 'Token with SRQ','Location','NorthEast');
xlim([0,0.8]);

 86

figure(4)
plot(ELP,CPS(:,8),'co-');
hold on
plot(ELP,CPH(:,8),'bx-');
plot(ELP,CTS(:,8),'g+-');
plot(ELP,CTH(:,8),'m*-');
hold off
xlabel('Error Level');ylabel('Number of Data Byte Per Sec');title('Throughput Data vs
Error Rate');
legend('Polling','Polling with SRQ','Token',...
 'Token with SRQ','Location','NorthEast');
xlim([0,0.8]);

figure(5)
plot(ELP,CPS(:,10),'co-');
hold on
plot(ELP,CPH(:,10),'bx-');
plot(ELP,CTS(:,10),'g+-');
plot(ELP,CTH(:,10),'m*-');
hold off
xlabel('Error Level');ylabel('Number of Dropped packet (per day)');title('Dropped Data vs
Error Rate');
legend('Polling','Polling with SRQ','Token',...
 'Token with SRQ','Location','NorthWest');
xlim([0,0.8]);

figure(6)
plot(ELP,CPS(:,12),'co-');
hold on
plot(ELP,CPH(:,12),'bx-');
plot(ELP,CTS(:,12),'g+-');
plot(ELP,CTH(:,12),'m*-');
hold off
xlabel('Error Level');ylabel('Channel Utilization Rate (%)');
title('Channel Utilization Rate vs Error Rate');
legend('Polling','Polling with SRQ','Token',...
 'Token with SRQ','Location','NorthEast');
xlim([0,0.8]);%ylim([0,100]);

figure(7)
plot(ELP,CPS(:,14),'co-');
hold on
plot(ELP,CPH(:,14),'bx-');
plot(ELP,CTS(:,14),'g+-');
plot(ELP,CTH(:,14),'m*-');

 87

hold off
xlabel('Error Level');ylabel('Cycle (per day)');
title('Error Free Cycle vs Error Rate');
legend('Polling','Polling with SRQ','Token',...
 'Token with SRQ','Location','NorthEast');
xlim([0,0.8]);

 88

THIS PAGE INTENTIONALLY LEFT BLANK

 89

LIST OF REFERENCES

[1] B. E. A. Kerstens, “A study of the Seastar underwater acoustic Local Area
Network Concept,” M.S. thesis, Naval Postgraduate School, Monterey, CA,
December 2007.

[2] Teledyne Benthos Staff, Acoustic Telemetry Modem User’s Manual, Teledyne
Benthos, P/N 003452, rev. F, March 2006.

[3] W. Jenkins, “Time/frequency relationships for an FFT-based acoustic modem,”
M.S. thesis, Naval Postgraduate School, Monterey, CA, June 2010.

[4] W. H. Thorp, “Analytic description of low frequency attenuation coefficient,”
Journal of the Acoustical Society of America, vol. 42, pp. 270–271, 1967.

[5] R. F. W. Coates, Underwater Acoustic System, NewYork: Halsted Press, 1986.

[6] R. Urick, Principles of Underwater Sound. 3rd ed. Los Altos, CA: Peninsula
Publishing, 1983.

[7] A. L. Anderson and G. J. Gruber, “Ambient-noise measurements at 30, 90, and
150kHz in Five Ports,” Journal of the Acoustical Society of America, vol. 49, no.
3, pp. 928–930, 1971.

[8] R. Urick, Ambient noise at the sea, Los Altos: Peninsula Publishing, 1986.

[9] J. R. Potter, T. W. Lim and M. Chitre, “Acoustic imaging & The natural
soundscape in Singapore waters,” Proceeding of Mindef-NUS joint seminar, pp.
141–147, 1997.

[10] H. Medwin, Sounds in the sea: From ocean acoustics to acoustical
Oceanography, Cambridge University Press, 2005.

[11] J. G. Proakis, Digital communications, 4th ed., McGraw-Hill, 2001.

[12] J. T. Hanson, “Link budget analysis for undersea acoustic signaling,” M.S. thesis,
Naval Postgraduate School, Monterey, CA, June 2002.

[13] J. M. Kalscheuer, “A Selective Automatic Repeat Request Protocol for Undersea
Acoustic Links,” M.S. thesis, Naval Postgraduate School, Monterey, CA, June
2004.

[14] M. J. Hahn, “Undersea navigation via a distributed acoustic communication
network,” M.S. thesis, Naval Postgraduate School, Monterey, CA, June 2005.

 90

[15] L.E. Kinsler, A.R. Frey, A.B. Coppens and J.V. Sanders, Fundamentals of
Acoustics, 4th ed., John Wiley & Sons Inc, 2000.

 91

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Professor Joseph A. Rice
Naval Postgraduate School
Monterey, California

4. Professor Daphne Kapolka
Naval Postgraduate School
Monterey, California

5. Roald Otnes
Norwegian Defense Research Establishment
Horten, Norway

6. Chris Fletcher

SPAWAR Systems Center Pacific
San Diego, California

7. ENS William Jenkins
Naval Postgraduate School
Monterey, California

8. LT Pongsakorn Sommai
Naval Postgraduate School
Monterey, California

9. ME5 Goh Meng Chong
Republic of Singapore Navy
Singapore

